{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

108APracticeQuizI

108APracticeQuizI - f Na me M.u Mathematics 108A Practice...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f Na me: M ..u- Mathematics 108A: Practice Quiz I May 19, 2010 Ploi'ossol 3 Douglas Moore True—False. Cilcle the best: answm to each of the following questions Each question is WOlbll ‘2 points 1 If iii-"1;: {(171,1'3) Eli-313 :m‘1 +1122 == 0}, amd i-Vg “3 {((E§,.’1;2)E [P12 : (1:2 2" 33:1}, then if?2 is the clilect sum of W} and ii"? FALSE 2. if W1 :2 {(:51,:1;g,:u3) E 1913:.1'1 + 2:2 w 23:3 = 0}, and Ww : sziil{l,1,1}, shew W13 is the clizect sum of W1 anti W2 TRUE 3 Regard V = Jl-Ig_g(C) as a vectc‘n space oval F91, and lot 10 2' 0 U—(o 1i ﬁlo o E F 012 J=(m10>* I‘"(u‘ 0) Then the list (U, I, 47,11") is a basis fm the subspace lill z: {A E Illg‘gUC) : A m H] + :51 + 3].] + :K, Whole t,:L‘,y, : 6 ill“. «1 if addition is VCCEOI addition and multiplicatimi is matlix multiplication, than H satiaﬁes all of the ﬁeld axioms except fol the comnmtntive law FALSE 5. Lot: 11" be the subspace of Pi" deﬁned by W : spanﬂl, 2,0,5),(0,0,1,4)) The“ ((1,2,(J,5),(U,U,1.41)) is a basis i0] W FALSE (3. Let: W‘L be the 01 {.hogmml cmz'lplemez‘lt to the space W cousidezed in the pieceding [3101)]e11‘i. Then {(——2, 1,0,0),{—n§,(}. -5,1)} is a basis for Wi ’K TRUE @ 5mm Isa (“520,”‘9’1H 7 Le%; LA : IR“ --+ IP32 be the lineal maps defined by L,.‘(x) : A): ,where A m Dix? W0 n'é-Q’I \_._/ Then ((m2,1,0.0),(—4,0,-—5, 1)) is a basis f01 N[T) TRUE 8 Let: LA rip-:2 -——a 3152“ be the lineal maps (Eeﬁned by L,;(X) : Ax ,wilel'e A : and:on Then ((1,2,0,5), (0,0,1,4)) is a basis {0: RC1“) FALSE {0 ...
View Full Document

{[ snackBarMessage ]}

Page1 / 2

108APracticeQuizI - f Na me M.u Mathematics 108A Practice...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online