{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Ã�Ã¯Ã�Ã­Ã�Â§Â»Ã¹&Acir

# Ã�Ã¯Ã�Ã­Ã�Â§Â»Ã¹&Acir - PUZZLER Have...

This preview shows pages 1–3. Sign up to view the full content.

458 c h a p t e r Fluid Mechanics Have you ever wondered why a tennis ball is fuzzy and why a golf ball has dim- ples? A “spitball” is an illegal baseball pitch because it makes the ball act too much like the fuzzy tennis ball or the dim- pled golf ball. What principles of physics govern the behavior of these three pieces of sporting equipment (and also keep airplanes in the sky)? (George Semple) P U Z Z L E R P U Z Z L E R 15.1 Pressure 15.2 Variation of Pressure with Depth 15.3 Pressure Measurements 15.4 Buoyant Forces and Archimedes’s Principle 15.5 Fluid Dynamics 15.6 Streamlines and the Equation of Continuity 15.7 Bernoulli’s Equation 15.8 (Optional) Other Applications of Bernoulli’s Equation C h a p t e r O u t l i n e

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
15.1 Pressure 459 atter is normally classified as being in one of three states: solid, liquid, or gas. From everyday experience, we know that a solid has a definite volume and shape. A brick maintains its familiar shape and size day in and day out. We also know that a liquid has a definite volume but no definite shape. Finally, we know that an unconfined gas has neither a definite volume nor a definite shape. These definitions help us picture the states of matter, but they are somewhat artifi- cial. For example, asphalt and plastics are normally considered solids, but over long periods of time they tend to ﬂow like liquids. Likewise, most substances can be a solid, a liquid, or a gas (or a combination of any of these), depending on the temperature and pressure. In general, the time it takes a particular substance to change its shape in response to an external force determines whether we treat the substance as a solid, as a liquid, or as a gas. A ﬂuid is a collection of molecules that are randomly arranged and held to- gether by weak cohesive forces and by forces exerted by the walls of a container. Both liquids and gases are ﬂuids. In our treatment of the mechanics of ﬂuids, we shall see that we do not need to learn any new physical principles to explain such effects as the buoyant force acting on a submerged object and the dynamic lift acting on an airplane wing. First, we consider the mechanics of a ﬂuid at rest—that is, ﬂuid statics —and derive an expression for the pressure exerted by a ﬂuid as a function of its density and depth. We then treat the mechanics of ﬂuids in motion—that is, ﬂuid dynamics. We can describe a ﬂuid in motion by using a model in which we make certain sim- plifying assumptions. We use this model to analyze some situations of practical im- portance. An analysis leading to Bernoulli’s equation enables us to determine rela- tionships between the pressure, density, and velocity at every point in a ﬂuid. PRESSURE Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress that can be exerted on an object submerged in a ﬂuid is one that tends to compress the object. In other words, the force exerted by a ﬂuid on an object is always per- pendicular to the surfaces of the object, as shown in Figure 15.1.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern