This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: EE 131A Homework #3 Winter 2006 Due February 9th K. Yao Read LeonGarcia, pp. 84–119 1. There are three power plants (denoted by i = 1 , 2 , 3) which can be either working or not working. If plant i is working, we denote it by a i = 1 and if it is not working, we denote it by a i = 0 . Then denote the status of the plants by the eight vectors of the form ( a 1 ,a 2 ,a 3 ) , where each a i can be either 1 or 0 . The probability of the eight events are given by: P[(0,0,0)]=.07; P[(0,0,1)]=.04; P[(0,1,0)]=.03; P[(0,1,1)]=.18;P[(1,0,0)]=.16; P[(1,0,1)]=.18; P[(1,1,0)]=.21; P[(1,1,1)]=.13. Denote the r.v. X as the total number of plants working. That is define X = a 1 + a 2 + a 3 . a. Draw a sample space S with these eight labeled elementary events. For the defined r.v. X, draw a line from each of the eight events to the realline (say drawn hori zontally) with the value on the realline indicating the mapping of X (( a 1 ,a 2 ,a 3 )) ....
View
Full
Document
This note was uploaded on 06/09/2010 for the course EE 131A taught by Professor Lorenzelli during the Spring '08 term at UCLA.
 Spring '08
 LORENZELLI

Click to edit the document details