# RP-HW3-sol - Kyung Hee University Department of Electronics...

This preview shows pages 1–4. Sign up to view the full content.

1 Kyung Hee University Department of Electronics and Radio Engineering C1002900 Random Processing Homework 3 Solutions: Sinusoid Estimation Spring 2010 Professor Hyundong Shin Issued: May 3, 2010 Due: May 17, 2010 (No acceptance of overdue submission) Reading: Course textbook Chapter 8 In this homework, we explore a basic problem involving sinusoid estimation. Specifically, given noisy observation of the form   cos , , , , nn YA n W n N  0 01 1 (3.1) we wish to estimate one or more of the nonrandom parameters A , 0 , or , where A 0 and   0 0 . In (3.1), we assume that the noises n W are i.i.d.   , 2 0 random variables. This model arises in a number of applications: analog communications, Doppler radar, noise cancel- lation, interference suppression, radio astronomy, and sonar direction-finding, for example. HW 3.1 (Cramér-Rao Bound) (a) The elements of the Fisher information matrix then take the form  ; ij ij f xx         YY Ix y x 2 (3.2) where  ;l n ; l n c o s N n N ff y n A n  yx 1 2 0 2 0 1 2 2 2 . (3.3) We compute the Fisher matrix entries one at a time. First,  ;c o s c o s cos Re , NN N n fn n A n N           y x 2 11 2 00 22 2 11 1 0 122 2 1 (3.4) where we introduce the function    defined via N jn n e N    0 1 0 0 1 (3.5)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 As we will see, this function and its first and second derivatives, respectively  N jn n ne N    0 1 22 0 0 2 (3.6) N n ne N   0 1 2 0 0 4 (3.7) play a central role in the Fisher information for the problem. Using (3.6),  ' ; cos sin sin Im N n N n f A An n n AN nn N AN              YY Ix y x 2 12 0 1 00 2 0 1 0 2 0 0 2 1 1 2 1 2 2 (3.8) and using (3.5), ; cos sin sin Im . N n N n f A An n AN n N AN  y x 2 13 1 2 0 1 0 2 0 0 2 1 1 2 2 (3.9) Using (3.7), '' ; sin cos cos Re , N n N n NN N f n A AA N n N N T      y x 2 2 22 0 1 2 0 2 0 2 1 2 0 2 0 11 0 0 1 122 2 1 1 4 (3.10) and using (3.6),
3   ' ; sin cos cos Re . N n N n NN nn N f An n A AA N n N S                YY Ix y x 2 23 0 1 22 0 2 0 2 1 0 2 0 11 0 00 0 1 122 2 1 2 (3.11) Finally, using (3.5), ; sin cos cos Re N n N n N n f A n N n N N  y x 2 2 33 1 0 2 0 2 1 0 2 0 1 0 0 0 1 2 1 (3.12) (b) To develop the asymptotic (large N ) behavior of the Fisher information, we explore the corres-

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 11

RP-HW3-sol - Kyung Hee University Department of Electronics...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online