{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

[RP]Lecture Note III

# [RP]Lecture Note III - Kyung Hee University Department of...

This preview shows pages 1–4. Sign up to view the full content.

Kyung Hee University Random Processing Department of Electronics and Radio Engineering Prof. Hyundong Shin Communications and Coding Theory Laboratory (CCTLAB) III-1 C1002900 RP Lecture Handout III: Functions of a Random Variable Reading: Chapter 5 3.1. Distribution of g X Let X be a random variable and g be a function mapping to . Specifically, sup- pose for any constant c that   : x g x c is a Borel subset of . Let Y g X   . Then, Y maps to and Y is a random variable, denoted by Y g X . X g X g X Y Example 3.1: Let , X   2 2 3 and Y X 2 . Find   Y f y . Since P Y 0 1 ,   Y F y 0 for y 0 . For y 0 , we have   . Y F y P X y P y X y y y X P y y G G 2 2 2 2 3 3 3 2 2 3 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Kyung Hee University Random Processing Department of Electronics and Radio Engineering Prof. Hyundong Shin Communications and Coding Theory Laboratory (CCTLAB) III-2 Since   ' x G x e 2 2 1 2 , we get     exp exp , . Y Y d f y F y dy y y y y 2 2 2 2 1 0 24 6 6 Example 3.2 (Hard Limiter): Let   , if , if x g x x 1 0 1 0 and Y g X . Then , Y takes the values 1 with     . X X P Y P X F P Y P X F     1 0 0 1 0 1 0 o x   X F x x   g x 1 1 X Y o y   Y F y 1 1 1 y   Y f y 1 1   X F 0   X F 0   X F 1 0 d dy
Kyung Hee University Random Processing Department of Electronics and Radio Engineering Prof. Hyundong Shin Communications and Coding Theory Laboratory (CCTLAB) III-3 Inverse Problem : An important step in many computer simulations of random systems is to generate a random variable with a specified CDF, by applying a function to a random variable that is uniformly distributed on the interval , 0 1 . Let F be a function satisfying the three properties required of a CDF, and let U be uniformly distributed over the inter- val , 0 1 . The problem is to find a function g such that F is the CDF of g U . An ap- propriate function g

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}