chapter_08

chapter_08 - January 27, 2005 11:45 L24-CH08 Sheet number 1...

This preview shows pages 1–4. Sign up to view the full content.

January 27, 2005 11:45 L24-CH08 Sheet number 1 Page number 337 black 337 CHAPTER 8 Principles of Integral Valuation EXERCISE SET 8.1 1. u =4 2 x,du = 2 dx, 1 2 Z u 3 du = 1 8 u 4 + C = 1 8 (4 2 x ) 4 + C 2. u =4+2 =2 dx, 3 2 Z udu = u 3 / 2 + C =(4+2 x ) 3 / 2 + C 3. u = x 2 ,du xdx, 1 2 Z sec 2 = 1 2 tan u + C = 1 2 tan( x 2 )+ C 4. u = x 2 xdx, 2 Z tan = 2ln | cos u | + C = | cos( x 2 ) | + C 5. u = 2 + cos 3 = 3 sin 3 xdx, 1 3 Z du u = 1 3 ln | u | + C = 1 3 ln(2 + cos 3 x C 6. u = 2 3 = 2 3 dx, 1 6 Z du 1+ u 2 = 1 6 tan 1 u + C = 1 6 tan 1 2 3 x + C 7. u = e x = e x dx, Z sinh = cosh u + C = cosh e x + C 8. u = ln = 1 x dx, Z sec u tan = sec u + C = sec(ln x C 9. u = tan = sec 2 xdx, Z e u du = e u + C = e tan x + C 10. u = x 2 xdx, 1 2 Z du 1 u 2 = 1 2 sin 1 u + C = 1 2 sin 1 ( x 2 C 11. u = cos 5 = 5 sin 5 xdx, 1 5 Z u 5 du = 1 30 u 6 + C = 1 30 cos 6 5 x + C 12. u = sin = cos xdx, Z du u u 2 +1 = ln ¯ ¯ ¯ ¯ ¯ u 2 u ¯ ¯ ¯ ¯ ¯ + C = ln ¯ ¯ ¯ ¯ ¯ p 1 + sin 2 x sin x ¯ ¯ ¯ ¯ ¯ + C 13. u = e x = e x dx, Z du 4+ u 2 = ln ³ u + p u 2 +4 ´ + C = ln ³ e x + p e 2 x ´ + C 14. u = tan 1 = 1 x 2 dx, Z e u du = e u + C = e tan 1 x + C 15. u = x 1 = 1 2 x 1 dx, 2 Z e u du e u + C e x 1 + C 16. u = x 2 +2 = (2 x +2) dx, 1 2 Z cot = 1 2 ln | sin u | + C = 1 2 ln sin | x 2 x | + C 17. u = = 1 2 x dx, Z 2 cosh = 2 sinh u + C = 2 sinh x + C

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
January 27, 2005 11:45 L24-CH08 Sheet number 2 Page number 338 black 338 Chapter 8 18. u = ln x,du = dx x , Z du u 2 = 1 u + C = 1 ln x + C 19. u = = 1 2 x dx, Z 2 du 3 u =2 Z e u ln 3 du = 2 ln 3 e u ln 3 + C = 2 ln 3 3 x + C 20. u = sin θ,du = cos θdθ, Z sec u tan udu = sec u + C = sec(sin θ )+ C 21. u = 2 x ,du = 2 x 2 dx, 1 2 Z csch 2 = 1 2 coth u + C = 1 2 coth 2 x + C 22. Z dx x 2 4 = ln ¯ ¯ ¯ x + p x 2 4 ¯ ¯ ¯ + C 23. u = e x = e x dx, Z du 4 u 2 = 1 4 ln ¯ ¯ ¯ ¯ 2+ u 2 u ¯ ¯ ¯ ¯ + C = 1 4 ln ¯ ¯ ¯ ¯ e x 2 e x ¯ ¯ ¯ ¯ + C 24. u = ln = 1 x dx, Z cos = sin u + C = sin(ln x C 25. u = e x = e x dx, Z e x dx 1 e 2 x = Z du 1 u 2 = sin 1 u + C = sin 1 e x + C 26. u = x 1 / 2 = 1 2 x 3 / 2 dx, Z 2 sinh = 2 cosh u + C = 2 cosh( x 1 / 2 C 27. u = x 2 xdx, 1 2 Z du csc u = 1 2 Z sin = 1 2 cos u + C = 1 2 cos( x 2 C 28. 2 u = e x , 2 du = e x dx, Z 2 du 4 4 u 2 = sin 1 u + C = sin 1 ( e x / 2) + C 29. 4 x 2 = e x 2 ln 4 ,u = x 2 ln 4 = 2 x ln 4 dx = x ln 16 dx, 1 ln 16 Z e u du = 1 ln 16 e u + C = 1 ln 16 e x 2 ln 4 + C = 1 ln 16 4 x 2 + C 30. 2 πx = e πx ln 2 , Z 2 πx dx = 1 π ln 2 e πx ln 2 + C = 1 π ln 2 2 πx + C 31. (a) u = sin = cos xdx, Z = 1 2 u 2 + C = 1 2 sin 2 x + C (b) Z sin x cos xdx = 1 2 Z sin 2 = 1 4 cos 2 x + C = 1 4 (cos 2 x sin 2 x C (c) 1 4 (cos 2 x sin 2 x C = 1 4 (1 sin 2 x sin 2 x C = 1 4 + 1 2 sin 2 x + C , and this is the same as the answer in part (a) except for the constants. 32. (a) sech 2 x = 1 cosh 2 x = 1 cosh 2 x + sinh 2 x (now multiply top and bottom by sech 2 x ) = sech 2 x 1 + tanh 2 x
January 27, 2005 11:45 L24-CH08 Sheet number 3 Page number 339 black Exercise Set 8.2 339 (b) Z sech2 xdx = Z sech 2 x 1 + tanh 2 x dx = tan 1 (tanh x )+ C , or, replacing 2 x with x , Z sech = tan 1 (tanh( x/ 2)) + C (c) sech x = 1 cosh x = 2 e x + e x = 2 e x e 2 x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/10/2010 for the course MATH 200-177 taught by Professor Richardwhite during the Spring '10 term at Drexel.

Page1 / 58

chapter_08 - January 27, 2005 11:45 L24-CH08 Sheet number 1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online