{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter_11

# chapter_11 - 11:47 L24-ch11 Sheet number 1 Page number 475...

This preview shows pages 1–4. Sign up to view the full content.

January 27, 2005 11:47 L24-ch11 Sheet number 1 Page number 475 black 475 CHAPTER 11 Analytic Geometry in Calculus EXERCISE SET 11.1 1. (1, 6 ) (3, 3 ) (4, e ) (–1, r ) 0 c / 2 (5, 8 ) (–6, – p ) 2. ( , L ) 3 2 0 c / 2 ( 3, i ) ( 5, @ ) (2, \$ ) (0, c ) (2, g ) 3. (a) (3 3 , 3) (b) ( 7 / 2 , 7 3 / 2) (c) (3 3 , 3) (d) (0 , 0) (e) ( 7 3 / 2 , 7 / 2) (f) ( 5 , 0) 4. (a) ( 2 , 2) (b) (3 2 , 3 2) (c) (2 2 , 2 2) (d) (3 , 0) (e) (0 , 4) (f) (0 , 0) 5. (a) (5 , π ) , (5 , π ) (b) (4 , 11 π/ 6) , (4 , π/ 6) (c) (2 , 3 π/ 2) , (2 , π/ 2) (d) (8 2 , 5 π/ 4) , (8 2 , 3 π/ 4) (e) (6 , 2 π/ 3) , (6 , 4 π/ 3) (f) ( 2 , π/ 4) , ( 2 , 7 π/ 4) 6. (a) (2 , 5 π/ 6) (b) ( 2 , 11 π/ 6) (c) (2 , 7 π/ 6) (d) ( 2 , π/ 6) 7. (a) (5 , 0 . 9273) (b) (10 , 0 . 92730) (c) (1 . 27155 , 0 . 66577) 8. (a) (5 , 2 . 2143) (b) (3 . 4482 , 2 . 6260) (c) ( 4 + π 2 / 36 , 0 . 2561) 9. (a) r 2 = x 2 + y 2 = 4; circle (b) y = 4; horizontal line (c) r 2 = 3 r cos θ , x 2 + y 2 = 3 x , ( x 3 / 2) 2 + y 2 = 9 / 4; circle (d) 3 r cos θ + 2 r sin θ = 6, 3 x + 2 y = 6; line 10. (a) r cos θ = 5, x = 5; vertical line (b) r 2 = 2 r sin θ , x 2 + y 2 = 2 y , x 2 + ( y 1) 2 = 1; circle (c) r 2 = 4 r cos θ + 4 r sin θ, x 2 + y 2 = 4 x + 4 y, ( x 2) 2 + ( y 2) 2 = 8; circle (d) r = 1 cos θ sin θ cos θ , r cos 2 θ = sin θ , r 2 cos 2 θ = r sin θ , x 2 = y ; parabola 11. (a) r cos θ = 3 (b) r = 7 (c) r 2 + 6 r sin θ = 0, r = 6 sin θ (d) 9( r cos θ )( r sin θ ) = 4, 9 r 2 sin θ cos θ = 4, r 2 sin 2 θ = 8 / 9 12. (a) r sin θ = 3 (b) r = 5 (c) r 2 + 4 r cos θ = 0, r = 4 cos θ (d) r 4 cos 2 θ = r 2 sin 2 θ , r 2 = tan 2 θ , r = tan θ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
January 27, 2005 11:47 L24-ch11 Sheet number 2 Page number 476 black 476 Chapter 11 13. 0 c / 2 3 3 3 3 r = 3 sin 2 θ 14. 3 3 2.25 2.25 r = 2 cos 3 θ 15. 0 c / 2 4 4 1 r = 3 4 sin 3 θ 16. 0 c / 2 r = 2 + 2 sin θ 17. (a) r = 5 (b) ( x 3) 2 + y 2 = 9 , r = 6 cos θ (c) Example 6, r = 1 cos θ 18. (a) From (8-9), r = a ± b sin θ or r = a ± b cos θ . The curve is not symmetric about the y -axis, so Theorem 11.1.1(a) eliminates the sine function, thus r = a ± b cos θ . The cartesian point ( 3 , 0) is either the polar point (3 , π ) or ( 3 , 0), and the cartesian point ( 1 , 0) is either the polar point (1 , π ) or ( 1 , 0). A solution is a = 1 , b = 2; we may take the equation as r = 1 2 cos θ . (b) x 2 + ( y + 3 / 2) 2 = 9 / 4 , r = 3 sin θ (c) Figure 11.1.18, a = 1 , n = 3 , r = sin 3 θ 19. (a) Figure 11.1.18, a = 3 , n = 2 , r = 3 sin 2 θ (b) From (8-9), symmetry about the y -axis and Theorem 11.1.1(b), the equation is of the form r = a ± b sin θ . The cartesian points (3 , 0) and (0 , 5) give a = 3 and 5 = a + b , so b = 2 and r = 3 + 2 sin θ . (c) Example 8, r 2 = 9 cos 2 θ 20. (a) Example 6 rotated through π/ 2 radian: a = 3 , r = 3 3 sin θ (b) Figure 11.1.18, a = 1 , r = cos 5 θ (c) x 2 + ( y 2) 2 = 4, r = 4 sin θ
January 27, 2005 11:47 L24-ch11 Sheet number 3 Page number 477 black Exercise Set 11.1 477 21. Line 4 22. Line ( 23. Circle 3 24. 4 Circle 25. 6 Circle 26. 1 2 Cardioid 27. Circle 1 2 28. 4 2 Cardioid 29. Cardioid 3 6 30. 5 10 Cardioid 31. 4 8 Cardioid 32. 1 3 1 Lima ç on 33. 1 2 Cardioid 34. 1 7 4 Lima ç on 35. 3 2 1 Lima ç on 36. 4 2 3 Lima ç on 37. Lima ç on 3 1 7 38. 2 5 8 Lima ç on 39. 3 5 Lima ç on 7 40. 3 1 7 Lima ç on 41. Lemniscate 1 42.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 49

chapter_11 - 11:47 L24-ch11 Sheet number 1 Page number 475...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online