chapter_14 - January 27, 2005 11:55 L24-ch14 Sheet number 1...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
January 27, 2005 11:55 L24-ch14 Sheet number 1 Page number 603 black 603 CHAPTER 14 Partial Derivatives EXERCISE SET 14.1 1. (a) f (2 , 1) = (2) 2 (1)+1=5 (b) f (1 , 2) = (1) 2 (2)+1=3 (c) f (0 , 0) = (0) 2 (0)+1=1 (d) f (1 , 3) = (1) 2 ( 3)+1= 2 (e) f (3 a,a )=(3 a ) 2 ( a )+1=9 a 3 +1 (f) f ( ab , a b )=( ab ) 2 ( a b )+1= a 3 b 2 a 2 b 3 2. (a) 2 t (b) 2 x (c) 2 y 2 +2 y 3. (a) f ( x + y,x y x + y )( x y )+3= x 2 y 2 +3 (b) f ( xy, 3 x 2 y 3 ) =( xy ) ( 3 x 2 y 3 ) +3=3 x 3 y 4 4. (a) ( x/y ) sin( x/y ) (b) xy sin( xy ) (c) ( x y ) sin( x y ) 5. F ( g ( x ) ,h ( y )) = F ( x 3 , 3 y ) = x 3 e x 3 (3 y +1) 6. g ( u ( x,y ) ,v ( )) = g ( x 2 y 3 ,πxy ) = πxy sin h ( x 2 y 3 ) 2 ( πxy ) i = πxy sin ( πx 5 y 7 ) 7. (a) t 2 t 10 (b) 0 (c) 3076 8. te 3ln ( t 2 +1 ) = t ( t 2 +1) 3 9. (a) v = 7 lies between v = 5 and v = 15, and 7 = 5 + 2 = 5 + 2 10 (15 5), so WCI 19 + 2 10 (13 19) = 19 1 . 2=17 . 8 F (b) v = 28 lies between v = 25 and v = 30, and 28 = 25 + 3 5 (30 25), so 19 + 3 5 (25 19) = 19 + 3 . 6=22 . 6 F 10. (a) At T = 35 , 14=5+9=5+ 9 10 (15 5), so 31 + 9 10 (25 31) = 25 . 6 F (b) v = 15 , 32 = 30 + 2 5 (35 30), so 19 + 2 5 (25 19) = 21 . 4 F 11. (a) The depression is 20 16 = 4, so the relative humidity is 66%. (b) The relative humidity 77 (1 / 2)7 = 73 . 5%. (c) The relative humidity 59+(2 / 5)4 = 60 . 6%. 12. (a) 4 C (b) The relative humidity 62 (1 / 4)9 = 59 . 75%. (c) The relative humidity 77+(1 / 5)(79 77) = 77 . 4%. 13. (a) 19 (b) 9 (c) 3 (d) a 6 (e) t 8 ( a + b )( a b ) 2 b 3 14. (a) x 2 ( x + y )( x y )+( x + y )= x 2 ( x 2 y 2 ) +( x + y x 4 x 2 y 2 + x + y (b) ( xz )( xy )( y/x )+ xy = xy 2 z + xy 15. F ( x 2 ,y ,z 2 ) y e x 2 ( y +1) z 2 16. g ( x 2 z 3 ,πxyz,xy/z ) xy/z ) sin ( 3 yz 4 )
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
January 27, 2005 11:55 L24-ch14 Sheet number 2 Page number 604 black 604 Chapter 14 17. (a) f ( 5 , 2 ,π, 3 π )=80 π (b) f (1 , 1 ,..., 1) = n X k =1 k = n ( n +1) / 2 18. (a) f ( 2 , 2 , 0 ,π/ 4) = 1 (b) f (1 , 2 ,...,n )= n ( n + 1)(2 n / 6, see Theorem 2(b), Section 5.4 19. 1 x y 20. 2 x y 21. x y 22. x y 23. (a) all points above or on the line y = 2 (b) all points on or within the sphere x 2 + y 2 + z 2 = 25 (c) all points in 3-space 24. (a) all points on or between the vertical lines x = ± 2. (b) all points above the line y =2 x (c) all points not on the plane x + y + z =0 25. 3 x y z 26. (0, 3, 0) z y x
Background image of page 2
January 27, 2005 11:55 L24-ch14 Sheet number 3 Page number 605 black Exercise Set 14.1 605 27. z y x 28. z y x 29. z y x 30. (2, 0, 0) (0, 2, 0) (0, 0, 4) z y x 31. z y x (0, 0, 1) 32. (0, 1, 0) (1, 0, 0) z y x 33. z y x (0, 0, 1) (0, –1, 0) 34. z y x 35. (a) f ( x,y )=1 x 2 y 2 , because f = c is a circle of radius 1 c (provided c 1), and the radii in (a) decrease as c increases. (b) f ( )= p x 2 + y 2 because f = c is a circle of radius c , and the radii increase uniformly. (c) f ( x 2 + y 2 because f = c is a circle of radius c and the radii in the plot grow like the square root function.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
January 27, 2005 11:55 L24-ch14 Sheet number 4 Page number 606 black 606 Chapter 14 36. (a) III, because the surface has 9 peaks along the edges, three peaks to each edge (b) IV, because the center is relatively flat and the deep valley in the Frst quadrant points in the direction of the positive x -axis (c) I, because the deep valley in the Frst quadrant points in the direction of the positive y -axis (d) II, because the surface has four peaks 37. (a) A (b) B (c) increase (d) decrease (e) increase (f) decrease 38. (a) Medicine Hat, since the contour lines are closer together near Medicine Hat than they are near Chicago.
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/10/2010 for the course MATH 200-177 taught by Professor Richardwhite during the Spring '10 term at Drexel.

Page1 / 52

chapter_14 - January 27, 2005 11:55 L24-ch14 Sheet number 1...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online