Math 304Solutions 7

Math 304Solutions 7 - Math 304 Solutions 7 1 Section 6.1 4....

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 304 Solutions 7 1 Section 6.1 4. Let A be a nonsingular matrix and let be an eigenvalue of A . Show that 1 / is an eigenvalue of A- 1 . Answer: Let v be the eigenvector for A corresponding to the eigen- value . Geometrically, the result of multiplying a multiple of v by A is to multiply its length by . Thus, multiplying by A- 1 will multiply the length of the vector by 1 / . Here is a more algebraic proof: Consider A- 1 ( A v ): A- 1 ( A v ) = v Since A v = v , A- 1 ( A v ) = A- 1 ( v ) Thus, we have that A- 1 ( v ) = v Thus, v is an eigenvector for A with eigenvalue 1 / . 10. Show that the matrix A = cos - sin sin cos will have complex eigenvalues if is not a multiple of . Give a geo- metric interpretation of this result. Answer: det( I- A ) = ( - cos ) 2 + sin 2 1 If det( I- A ) = 0, then ( - cos ) 2 =- sin 2 If is real, the left side of this equation is always greater than or equal to 0, and the right side of this equation is always less than or equal to...
View Full Document

This note was uploaded on 06/11/2010 for the course MA 405 taught by Professor Staff during the Spring '08 term at N.C. State.

Page1 / 3

Math 304Solutions 7 - Math 304 Solutions 7 1 Section 6.1 4....

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online