Properties of Areas &amp; Volumes

# Properties of Areas &amp; Volumes - ’i‘ APPENDIX...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ’i‘; APPENDIX Properties of Areas and Lines 3.1 Areas The coordinates of the centroid of the area A-‘are y / x dA /y dA _ A _ r A x : ' a y = ‘ / dA / dA A ‘ A ! i 1 i i The moment of inertia about the x axis Ix, the moment of inertia about the y axis 2 [y, and the product of inertia Ixy are g S Ix=/y2dA, [y=/x2dA, Ixy=/xydA. A A A The polar moment of inertia about 0 is J0: /r2dA = /(x2+y2)dA =Ix+1y. A A Area = bh 578 Appendix B Properties of Areas and Lines 1 Area = gbh Triangular area 1 A = —bh rea 2 Triangular area Circular area Semicircular area y l : 54 l 4R 317 Quarter-circular area 8.2 Lines 579 Area = aR2 1 1 1 1 [X = ZR4<0¢ M ism 2a), IVV ZR4<0¢ + Esin 201), 19th Ixy * 0 '__b2h2 2 A 1 b rea 2 ~ 47m 1 ' 1 1 Ix = Ewaba I = 167761319, [W = ~8-a2b2 n+1 Area 2 Cb n + 1 I ” 63b3n+1 H,cbn+3 I _ 62yb2n+2 x 9n+3’ n+3y xy 4n+4 f (n +1)b r x n + 2 i 16+!) 1' Spandrel 313 Lines Thelcoordinates of the centroid of the line L are y x dL /y dL /z dL 4 =1 gm / dL / dL / dL wj g- L L L ’y _ x Z W7 A ,R y /R Appendix A Review of Mathe D’PENDIX ‘Volumes and i, wus Objects ine coordinates of the centroid of the volume V are /de /de V V 3=”—> y: , /dV /dV V V The center of mass of a homogeneous object coincides with the centroid of its volume. ‘" [z axis " 0: Iy’axis : [z’axis — l _ ’ 2 Ix’ axis — Iy’ axis ‘ ZmR a Thin circular plate Appendix C Properties of Volumes and’Homogeneous Objects 581 l l Ixaxis : gmhz? [yaxis : _Mb2~ 1: axis 2 gm“; + kg) 1 1 h? 1’ 1 mbz I 1 m(b2 + h”) , . _‘—_ “In *5 , . : ——- a 1,. . : “- “ x axxs 12 y 3x15 12 ax1s 12 Thin rectangular plate m m [x axis : Elm 1}) axis : 21y, 12 axis ~ Ixaxis + 1y axis The terms Ix and [y are the moments of inertia of the plate’s cross-sectional area A about the x and y axes. he centroid Thin plate l 1 Ix’ axis - 1—2m(a2 " b2), [y’ axis _ Emu; + C2): 1' - ” —1~m(b2 -- 62) M z axrs 12 Rectangular prism I j Volume 2 WRZZ 1 l 1 IaniS : [yams : m<§lz + 1R2)? Izaxis : *mRZ 582 Appendix C Properties of Volumes and Homogeneous Objects 1 Volume = Eszh 3 3 3 IaniS _ [Vans 3 m ghz + 7—0’R2 ’ Izaxis = —mRZ .4 Circular cone 3 3 Ix’axis ’_ [y’axis — 7” gig]? + 36R , IZ,axis _ ._mR Volume = Err}? q A; = -. — _ 2 Ix’ axis Iy’ axis Iz’ axis 5 mR Volume = 377R3 2 2 : Iv axis : 133x13 2 “MR ‘ 5 Ix axis 83 Ix, = 1y] = 355W, Iz/ = gmzez Hemisphere ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

Properties of Areas &amp; Volumes - ’i‘ APPENDIX...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online