This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Quiz 1
Math 308/603, January 22 1. Let X1,X2,...,X,. be independent random variables with E(Xg) = p. and
Var(X 1‘) = 0”. Find the mean and \a‘axciance of the sample mean 3; = 32;: E:
n n ' 2. Suppose W,X,Y are independent normal random variables with means 3,
4, and 5 respectively. Suppose each has standard deviation 7. Use these to
construct ‘ a. a chisquared random variable lwith 3 degrees of freedom, x§ b. a. t random variable with 2 degrees of freedom, t2. 3. Show that if X ~ mea then X‘1 ~ me. QMii ’f Re); Mfﬁk 308/608/ aqnum/y 32' n ('1 in: Xﬂy‘zé EEQXsz—éél =J.A EKX>=E n
"(1 ‘ —
V ‘— = .L h‘ ..I r‘ ,_
(MUM Vaa n 5 X‘ "6‘ VGA [2. XQ 
"I 1‘ L
1 ‘L V 1' l“ 7'2. é
7‘ “I E! “4X0 h“ 5'6 “
.5;th :h ALAﬂnéﬁth
\A/N N(‘312)/ X61 y(4/}1)/ YuA/(g/J'L) (ax/L .r‘XSEQ/IM,‘
“mm X
Awe; _ ~4 [5 .
Curt 0J5“ “\th AMA‘ ILMJ‘
a :L z 1‘ «37. x~qi YﬂgL it
) {I‘ll22+2} 3 )+(:_; )+k E N .5
19 iii5
2 ET  L 4 V5?— M it.
(2540/2 Egpkg )3/‘2.
fiel X“) ‘n/m 1Q. 5%; bf [AN n)v»/r’ h I'\A
‘ QJ‘] il_ M/ﬂ “id VIM N
X '(w/m) ‘ am PM ...
View
Full Document
 Spring '10
 LACEY
 Math

Click to edit the document details