{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Section5.1cont&amp;5.2posted

# Section5.1cont&amp;5.2posted - STOR155,Section2...

This preview shows pages 1–5. Sign up to view the full content.

STOR 155, Section 2 Thursday, April 1, 2010 Finishing Section 5.1 Section 5.2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
5.1 Sampling distributions for counts and  proportions: Summary Binomial setting:  two categories of outcomes (success, failure) Parameters: n  = number of trials or size of simple random sample p  = probability of success on each trial      or proportion of successes in population Statistics: = count of successes p  =  X/n  = proportion of successes Then µ X   np  and  σ X  =  np ( 1-p )     and  X ’s sampling distribution is  B(n,p) µ p   p  and  σ p  =  p ( 1-p ) /n And X  and  p  are approximately Normally distributed provided  n  is large enough that  np  and  n ( 1-p ) are both   10 ^ ^ ^ _____ ______
A college will admit 1200 students.  The  number who will accept is random; from  past experience, 75% of students accept. a.  Mean and standard deviation of the  number who will accept? b.  What’s the probability that more than  950 will accept? c.  If they admit  1300 , what’s the  probability that more than 950 will  accept? 5.1 Sampling distributions for counts and  proportions: Exercise 5.28

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Imagine a great number of performances of
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 13

Section5.1cont&amp;5.2posted - STOR155,Section2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online