Section5.1cont&5.2posted

Section5.1cont&5.2posted - STOR155,Section2...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
STOR 155, Section 2 Thursday, April 1, 2010 Finishing Section 5.1 Section 5.2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
5.1 Sampling distributions for counts and  proportions: Summary Binomial setting:  two categories of outcomes (success, failure) Parameters: n  = number of trials or size of simple random sample p  = probability of success on each trial      or proportion of successes in population Statistics: = count of successes p  =  X/n  = proportion of successes Then µ X   np  and  σ X  = √ np ( 1-p )     and  X ’s sampling distribution is  B(n,p) µ p   p  and  σ p  = √ p ( 1-p ) /n And X  and  p  are approximately Normally distributed provided  n  is large enough that  np  and  n ( 1-p ) are both ≥ 10 ^ ^ ^ _____ ______
Background image of page 2
A college will admit 1200 students.  The  number who will accept is random; from  past experience, 75% of students accept. a.  Mean and standard deviation of the  number who will accept? b.  What’s the probability that more than  950 will accept? c.  If they admit  1300 , what’s the  probability that more than 950 will  accept? 5.1 Sampling distributions for counts and  proportions: Exercise 5.28
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Imagine a great number of performances of 
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/12/2010 for the course STOR 155 taught by Professor Andrewb.nobel during the Spring '08 term at UNC.

Page1 / 13

Section5.1cont&5.2posted - STOR155,Section2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online