Chg3 - ª Tieán haønh n pheùp thö ñoäc laäp ª X laø so laàn A xaûy ra trong n pheùp thö thì X laø ñ.l.n.n rôøi raïc coù

Info iconThis preview shows pages 1–19. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ª Tieán haønh n pheùp thöû ñoäc laäp. ª X laø soá laàn A xaûy ra trong n pheùp thöû, thì X laø ñ.l.n.n rôøi raïc coù theå nhaän caùc giaù trò: 0, 1, 2. . . . , n X phaân phoái theo qui luaät P(A) = p ñoái vôùi moïi pheùp thöû Ñaïi löôïng ngaãu nhieân X phaân phoái theo qui luaät nhò thöùc vôùi caùc tham soá n vaø p ñöôïc kyù hieäu laø: X ∼ B(n, p) ) n ,...., 2 , 1 , x ( q p C ) x X ( P P x n x x n x = 2200 = = =- (3.1) b- Coâng thöùc tính xaùc b- Coâng thöùc tính xaùc suaát suaát Neáu X ∼ B(n, p) Neáu X ∼ B(n, p) vaø ta caàn tính P(X = x) hoaëc P(X ≤ x) thì coù theå duøng haøm BINOMDIST trong Excel. P(X = x) =BINOMDIST(x, n, p,0) P(X ≤ x) =BINOMDIST(x,n,p,1) Thí duï: X ∼ B(50; 0,3) Tính P(X = 16) vaø P(12 ≤ X ≤ 18) P(X = 16) = BINOMDIST(16,50,0.3,0) = 0,1147 P(12 ≤ X ≤ 18) = P(X ≤ 18) - P(X ≤ 11) = BINOMDIST(18,50,0.3,1)- BINOMDIST(11,50,0.3,1) = 0,7204 P(x P(x ≤ ≤ X X ≤ ≤ x+h) = P(X = x) + x+h) = P(X = x) + P(X = x+ 1) + . . . . + P(X P(X = x+ 1) + . . . . + P(X = x+h) (3.2) Neáu X ∼ B(n, p), thì: Trong ñoù: P(X=x), P(X=x+1),. . . , P(X=x+h) ñöôïc tính theo coâng thöùc (3.1) c- Caùc tham soá ñaëc c- Caùc tham soá ñaëc tröng: tröng: Kyø voïng toaùn: Kyø voïng toaùn: Neáu X ∼ B(n , p) thì: E(X) = np Phöông sai: Phöông sai: Neáu X Neáu X ∼ ∼ B(n , p) B(n , p) thì: thì: Var(X) = npq Var(X) = npq Giaù trò tin chaéc nhaát: Giaù trò tin chaéc nhaát: Neáu X ∼ B(n , p) thì: np + p - 1 ≤ Mod(X) ≤ np + p X ∼ B(n, p) nhöng n lôùn, p nhoû (p < 0,1), np = λ khoâng ñoåi thì ta coù theå coi X phaân phoái theo qui luaät Poisson vôùi tham soá λ X coù phaân phoái Poisson vôùi tham soá λ ñöôïc kyù hieäu laø: X ∼ P( λ ) e - haèng soá neâpe: e = ; e ≈ 2,71828 n n n 1 1 Lim + ∞ → Neáu X ∼ P ( λ ) thì: P k = P(X = k) = e- λ ! k k λ (k = 0, 1, 2, . . .) Neáu X ∼ P ( λ ) thì: P(k ≤ X ≤ k+h) = P k + P k+1 +. . . +P k+h (3.9) Chuù yù: Neáu X ∼ P( λ ), ñeå tính P(X = k) hoaëc P(X ≤ k) ta coù theå duøng haøm POISSON trong EXCEL P(X = k) = POISSON(k, λ ,0) P(X ≤ k) = POISSON(k, λ ,1) Thí duï 1: Cho X ∼ P(1,5), Tính P (X = 5) vaø P(X ≤ 3) P (X = 5) = POISSON(5,1.5,0) = 0,01412 P(X ≤ 3) = POISSON(3,1.5,1) = 0,934358 Thí duï 2: Moät maùy deät coù 500 oáng sôïi. Xaùc suaát ñeå moät oáng sôïi bò ñöùt trong khoaûng thôøi gian 1 giôø maùy hoaït ñoäng laø 0,004. Tìm xaùc suaát ñeå trong moät giôø coù khoâng quaù 2 oáng sôïi bò ñöùt. Giaûi: Neáu coi vieäc quan saùt 1 oáng sôïi xem coù bò ñöùt hay khoâng trong khoaûng thôøi gian 1 giôø laø moät pheùp thöû thì ta coù 500 pheùp thöû ñoäc laäp....
View Full Document

This note was uploaded on 06/14/2010 for the course ACCOUNTING 123456 taught by Professor Vananh during the Spring '10 term at Vaasan ammattikorkeakoulu.

Page1 / 74

Chg3 - ª Tieán haønh n pheùp thö ñoäc laäp ª X laø so laàn A xaûy ra trong n pheùp thö thì X laø ñ.l.n.n rôøi raïc coù

This preview shows document pages 1 - 19. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online