lecture08 - Yinyu Ye, MS&E, Stanford...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 1 OptimalityConditionsforNonlinearOptimization YinyuYe DepartmentofManagementScienceandEngineering StanfordUniversity Stanford,CA94305,U.S.A. http://www.stanford.edu/yyye Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 2 MoreGeneralOptimizationProblems Lettheproblemhavethegeneralmathematicalprogramming(MP)form ( P ) minimize f ( x ) subjectto x F . Inallformsofmathematicalprogramming,a feasiblesolution ofagivenproblem isavectorthatsatisfiestheconstraintsoftheproblem,thatis,in F . Thequestion:Howdoesonerecognizeorcertifyanoptimalsolutiontoa generallyconstrainedandobjectived optimizationproblem? Answer: OptimalityConditionTheory . Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 3 GlobalandLocalOptimizers A globalminimizer for(P)isavector x suchthat x F and f ( x ) f ( x ) x F . Unlikelinearprogramming,sometimesonehastosettlefora localminimizer ,that is,avector x suchthat x F and f ( x ) f ( x ) x F N ( x ) where N ( x ) iscalleda neighborhood of x .Typically, N ( x )= B ( x ) ,anopen ballcenteredat x havingsuitablysmallradius > . Thevalueoftheobjectivefunction f ataglobalminimizeroralocalminimizeris alsoofinterest.Wecall f ( x ) the globalminimumvalue anda localminimum value ,respectively. Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 4 ContinuouslyDifferentiableFunctions Theobjectiveandconstraintareoftenspecifiedbyfunctionsthatare continuously differentiable orin C 1 overcertainregions. Sometimesthefunctionsare twicecontinuouslydifferentiable orin C 2 over ceratinregions. Thetheorydistinguishesthesetwocasesanddevelops first-orderoptimality conditions and second-orderoptimalityconditions . Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 5 MotivationfromOne-VariableProblem Consideradifferentiablefunction f ofonevariabledefinedonaninterval [ a,e ] . Ifaninterior-point x isalocal/globalminimizer,then f ( x )=0; ifthe left-end-point a isalocalminimizer,then f ( a ) 0; iftheright-end-point e isa localminimizer,then f ( e ) . Tosummarize:if x [ a,e ] isalocalminimizer,itmustbetrue f ( x )= y a- y e , ( y a ,y e ) ,y a ( x- a )=0 ,y e ( e- x )=0 fortwonon-negativenumbers y a and y e . Thesearecalledthe first-ordernecessaryconditions .Here y a and y e arecalled Lagrangeordualmultipliers forthetwoconstraints x a and x e , respectively;andthelasttwoequationsarecalledthe complementarity conditions . Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 6 x a b c e d f Figure1:Globalandlocalminimizersofone-varialbefunction Yinyu Ye, MS&E, Stanford MS&E211 Lecture Note #08 7 MotivationfromOne-VariableProblemcontinued If f ( x )=0 ,then f 00 ( x ) isalsonecessary,whichiscalledthe second-ordernecessarycondition. Theseconditionsarenot,ingeneral,sufficient.Itdoesnotdistinguishbetween localminimizers,localmaximizers,orpointsofinflection.However,ifinadditionto thefirst-ordercondition,thesecond-ordercondition...
View Full Document

This note was uploaded on 06/16/2010 for the course MS&E 211 taught by Professor Yinyuye during the Fall '07 term at Stanford.

Page1 / 24

lecture08 - Yinyu Ye, MS&E, Stanford...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online