homework set 18

# homework set 18 - a y 000-y 00-y y = 2 e-x 3 b y 000 4 y =...

This preview shows page 1. Sign up to view the full content.

B ˙ ILKENT UNIVERSITY Department of Mathematics MATH 225, LINEAR ALGEBRA and DIFFERENTIAL EQUATIONS, Homework set # 18 U.Mu˘gan July 16, 2008 METHOD OF UNDETERMINED COEFFICIENTS 1) Find the general solution of the following D.E’s a) y 00 - 2 y 0 - 3 y = 3 e 2 x . b) y 00 + 2 y 0 = 3 + 4 sin2 x . c) y 00 + 2 y 0 + y = 2 e - x . d) y 00 + y = 3 sin2 x + x cos2 x . e) y 00 + y 0 + 4 y = 2 sinh x , Hint: sinh x = ( e x - e - x ) / 2. 2) Solve the following I.V.P. a) y 00 + y 0 - 2 y = 2 x, y (0) = 0 , y 0 (0) = 1 . b) y 00 - 2 y 0 - 3 y = 3 xe 2 x , y (0) = 1 , y 0 (0) = 0 . 3) Determine a suitable form for the particular solution y p ( x ) if the method of undetermined coeﬃcients (M.U.C) is to be used. Do not evaluate the coeﬃcients . a) y 00 + 3 y 0 = 2 x 4 + x 2 e - 3 x + sin3 x . b) y 00 + 2 y 0 + 2 y = 3 e - x + 2 e - x cos x + 4 e - x x 2 sin x. c) y 00 + 2 y 0 + 5 y = 3 xe - x cos2 x - 2 xe - 2 x cos x . METHOD OF UNDETERMINED COEFFICIENTS, HIGHER ORDER D.E. 4) Determine the general solution of the given D.E.
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a) y 000-y 00-y + y = 2 e-x + 3. b) y 000 + 4 y = x, y (0) = y (0) = 0 , y 00 (0) = 1. 5) Determine a suitable form for the particular solution y p ( x ) if the method of undetermined coeﬃcients (M.U.C) is to be used. Do not evaluate the coeﬃcients . a) y 000-2 y 00 + y = x 3 + 2 e x b) y (4)-y 000-y 00 + y = x 2 + 4 + x sin x . c) y (4) + 4 y 00 = sin 2 x + xe x + 4. 6) For each of the equations in exercise #5, obtain the diﬀerential operator g ( D ) such that g ( D ) R ( x ) = 0 and then ﬁnd the form of the particular solution y p ( x ) from g ( D ) f ( D ) y = g ( D ) R ( x ) = 0 ....
View Full Document

## This note was uploaded on 06/18/2010 for the course COMPUTER S Math 225 taught by Professor Yosumhoca during the Spring '10 term at Bilkent University.

Ask a homework question - tutors are online