Path A:
isothermal (
∆
T = 0)
Path B:
adiabatic (q
B
= 0)
Path C:
const. V (
δ
w = 0)
Path D:
const. P
Path E:
const. V
δ
q
rev
T
is Path Independent and a State Function
Path Condition
S
T
q
rev
∆
=
∫
δ
A
T=const
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
∆
−
=
+
=
=
1
2
1
1
ln
0
V
V
nR
S
dV
V
nRT
dS
T
w
q
dU
A
δ
δ
B
q=0
0
=
∫
=
∆
T
q
S
B
B
δ
C
V=const
*
ln
ln
1
2
2
1
1
2
1
2
V
V
nR
T
T
C
T
dT
C
dS
S
TdS
q
w
q
dU
dT
C
V
T
T
V
T
T
C
V
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
∫
=
∫
=
∆
=
=
+
=
=
δ
δ
δ
Path A connects Path (B+C) and
∆
S
A
=
∆
S
B
+
∆
S
C

This
** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*