Math 9C Sec 3.3

Math 9C Sec 3.3 - = + y x1 x2 at (1, 12 ) tangent. + =-+- (...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 9A Section 3.3 Quotient Rule: ( ) ( )=[ ( )] ddxf x g x g x 2 Lo d Hi- Hi d Lo/ Lo squared Ex) + + + = + + - + - ( + )( + ) ddxx2 x 2x3 6 2x 1x3 6 x2 x 2 2x 1 x3 6 2 Theorem: If n is a positive integer then, - =- - - ddxx n nx n 1 Proof: - = = - ( )( ) = - - =- - ddxx n ddx1xn 1xn 1 xn xn 2 0 nxn 1x2n nxn 1x2n Ex) - = - - = - ddx2x 3 6x 3 1 6x 4 Theorem: If n is any real number then = - ddxxn nxn 1 Ex) Find the equation of the tangent line and the normal line to
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = + y x1 x2 at (1, 12 ) tangent. + =-+- ( )( + ) = ( )-+- ( )( + ) = -=-ddxx1 x2 12x 121 x2 x 2x 1 x2 2 12 1 121 12 1 2 1 12 2 1 24 14 y=mx+b The normal line: y=-14 x+b y=4x+b 12 =-14 (1)+b 12 =4 (1)+b b= 34 b=-72 The tangent line: y=-14 x+ 34 Normal Line: y=4x-72 #63. Suppose f(g)=1, f(5)=6, g(5)=-3, g(5)=2 a) (fg)(5)= f(5)g(5)+f(5)g(5)=(6)(-3)+(1)(2)=-16...
View Full Document

Ask a homework question - tutors are online