Math 9C Sec 3.3

# Math 9C Sec 3.3 - = y x1 x2 at(1 12 tangent = = =-=-ddxx1...

This preview shows page 1. Sign up to view the full content.

Math 9A Section 3.3 Quotient Rule: ( ) ( )=[ ( )] ddxf x g x g x 2 Lo d Hi- Hi d Lo/ Lo squared Ex) + + + = + + - + - ( + )( + ) ddxx2 x 2x3 6 2x 1x3 6 x2 x 2 2x 1 x3 6 2 Theorem: If n is a positive integer then, - =- - - ddxx n nx n 1 Proof: - = = - ( )( ) = - - =- - ddxx n ddx1xn 1xn 1 xn xn 2 0 nxn 1x2n nxn 1x2n Ex) - = - - = - ddx2x 3 6x 3 1 6x 4 Theorem: If n is any real number then = - ddxxn nxn 1 Ex) Find the equation of the tangent line and the normal line to
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = + y x1 x2 at (1, 12 ) tangent. + =-+- ( )( + ) = ( )-+- ( )( + ) = -=-ddxx1 x2 12x 121 x2 x 2x 1 x2 2 12 1 121 12 1 2 1 12 2 1 24 14 y=mx+b The normal line: y=-14 x+b y=4x+b 12 =-14 (1)+b 12 =4 (1)+b b= 34 b=-72 The tangent line: y=-14 x+ 34 Normal Line: y=4x-72 #63. Suppose f(g)=1, f’(5)=6, g(5)=-3, g’(5)=2 a) (fg)’(5)= f’(5)g(5)+f(5)g’(5)=(6)(-3)+(1)(2)=-16...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online