pfsol - Math 16C Final Exam Part 1 Problem 1(12 points...

Info iconThis preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 16C Final Exam Part 1 Problem 1 (12 points) Determine Whether the sequence con— verges or diverges. If it converges, then find the limit. (a)(4 points) an 2 1 ' W , ,_ \ H r \‘\N\ “‘0 “WW Ld (:70 \ \Ne week Q Avnnxoer N (Va/k ’Y‘MJY 2) . A2. f E .L. ~ He 5 AL s. 4—» A , .1, 3A ‘33 (GN ~ N2- fivwa \q; —o\ f Q Are . 2_ (b)(4 pomts) {2243 30:0 ‘ ‘ “1‘! w \ (71,». A"i ! j _, «(m 1 J. 7.4. A300 find P4C>Q\hl_ n 'E A” I \ \“I‘L ,1 '9 \4 J”?— y\ 0:: n \ «O : My _\ Jr 0 : l 1 2 (C)(4 points) an = (_1)n n 1+n3 1 . \ L A x .33 “I \W“ H“: M \W“ l. ' w ‘3 {\"§O:> n? \ A \/ ““ \ ,1}...— w t/KTK'K O " OM pOints) an : \m “ m ' a 1' Y‘c-‘r‘oc 1 law}: A a . _‘ ' 0L ‘ 0k \ L 1" ’(NW A T W‘ 7. ‘ 7“?” w . ,. w—mm 2— 1 1 Z .3. A) ' L V: x I 9" g \; 2\\M l l SIACE, 1th hficfl A \M H .ném “ 0:3 Problem 2 (20 points) Determine Whether the series con— verges Or diverges. State the name of the test you are using in each case. (a) (4 points) 23°21 UK M ax“ Va” 1M ' (1AM)! \ \CM \ “"‘ \ 1‘ W \"Lacwwx 1“ “$00 0‘“ Y\"‘>C>b : 0 < '1 So M4 «HRS Cars/U70 (b) (4 points) 230:0 371;?” r; 00 Igfih—lk <0Q) 1A “A30 6" : C. A: 0 6" A” T“ P. '- '\ : 2,33%?“ W] A. g X -« ES; 51)“ x :3 s) x A. ( * rm: &; seq ll U Svyx 9% ; kaxfirtc «(10 (c) (4 points) 220:1 % d 4 ' 0° ___3_tl__ ( )( p°1nts)zn=l¢%TJ:§;“2 We can um M N5 firm ‘VUJF ovx HA3 6mg 1 K J‘— . \W % .. \ ‘ ’ ~§A”L'3+“L ~ \/"\ ‘ w" {\"300 “$00 S"r\°‘\-§fl “MM Sn‘i‘f‘hl \ 4 3+0 H5 1 \ 0) go “Vine, kw?) An/eaig (e>(4 points) 2,21% \ ____ 00” E 2 “SA “ “'31 {\AA“ rnzfi Y\.:\ 1%»! <5 a q’flries MW Q 99 Jdalj Sent) Aivflrzd Problem 3 (16 points) (a) (8 points) What is the 24th par— tial sum of the series 230:0 fiT 7 fikfl ’VHQC a ’\’o \(‘QQMR “Aafi a fizamd‘ric 50W)" ,\ . n '\ E 00 in n-\ '— Ob S 1 fit 20b E L g E Ob EN “:0 '3, g — A50 3 gngm “" {\fio 3 (YA i 3 A571”) "L Lek C f E" ’ g Vfi Vax’fiaA Svm U 3“:qu k. +VN>- I; ‘.5/ , Br“; VS“:LV* In ‘E‘ (N'h) 3 5' So SfiQV’C) ;ib“’ VS“ Z¥\\v ¥\-“)_ k? \_ ,C YN\_VNH]‘§:L\”C + )‘5 Qt} :I \dr _ -- ‘6 7;, “ \dr fil’W/S’ $1“? 5: 0 \ (‘5‘ 3 V113- (b)(8 points) Find the sum of the series 230:0 W. [\L») U a acaszXrlc. germ; \ .- ‘67 Ma“ N» OC) A :3 3%” ~ Em 2w ' <"" L A Z wafflu) __ \ N rift“ \“ \1 Problem 4 (16 points) For which values of a: does the power series 230:0 converge? What is the radius of convergence? H + cum 4 lM‘MXUy‘ 3A ‘ \w \ an \ : kiZA “KW” MMM‘ “60% ’ ‘ (MK) 3 ‘ (KWM‘ \ Thm \ A W1 mm“ “$06 \ MK ‘s H a r m 7" SUM W‘Boo rm w new “$09 a . \ /WW : k\*a)'3\x>¢1\ » .. \ - §\><*l\ "VI/xi SfFQCJ (OAVKr'éj/Lj szA Z \ V‘\\.0b A‘S/flfng 'W‘LZA E‘AXNDA 31 Sn \JY Coflwfik"; XJof *‘ < Problem 5 (16 points) Find a power series representation for f = 1 +1362 and determine the interval of convergence. \ \ \* Hx‘ “ \‘ (‘Lixl‘i OK) '\ ~ 20F \“4x1\< 1 d Era-a (A 4x11) 'l<:; ar NH? ‘ " ' ‘ _. i so *irxfl in\\{(\/(;\ 3% (Omveffiqmc/Q ‘5 ( E ) % Problem 6 (16 points) Find the Taylor series for f(:z:) = centered at c = we, Wm *0 mm; sax : if: \onbvd“ A?“ <14<_{4o\(.\'€/AT \é' ,\ S , I; :31) ,V. £03k) a ;. y t X 1 I ~ Ry TGVXOKJ W‘Lafm) V‘K “a”: \0“ M 53400 : f\(x) 1 fiincx) Part 2 Problem 7 (16 points) Find a general solution for the follow— ing differential equations. (a)(4 points) 3y2% = 1 (1‘71 7- 1 (AK '7: Mg (b) (4 points) % + % = 3x + 4 m3} ‘5 4 {Nil "Jrlcf \lszar‘ Shadow} gar“ l \f I ¥ 3)? : \_ 1..., \My ML {Vie Lt 1th 1 , A’ 1 L/K ( bftllvj< 3" PGJJ vél‘ (V'Xl' 19%- + late-file 7X 7' (2x1 thMlx i: Xx" «1X1 JV C. 10 (c) (4 points) my’ + y = x2 + 1 (\LJ {5 fi, QMW’arAV \mfar 212k. 20m» 7 ’ i '12)“:- >< * :1 ngdx AX M,_§ec"¢c.l V“ 1W“ 6 T Q 7“ Md. \o- 104‘. y’X ‘V y j )C‘ H \Zamixcz '. w xY : x‘ +\ 3 imam yx : {(xtumx : % “(Ac C (d)(4 Points) 3/ - 2933! = 21“ TM; \1 a XVA’OFJ’V \«M-V (XLV‘UP 7"“ 1x77“ IMAX/ X W: Le\‘ 2100 : c: 3 e M1 IV “' Problem 8 (20 points) (a) (10 points) Find fx, fy , and fgcy for f(a:, y) = ln(\/:):2 + 3/2). —\/~ x ‘: O ,L. /,\‘\\f\ Lofi’, ix I“ ‘ A m» \ , . -- 4. i" 1“ 1 I» r 7/ . S<~7 ’ \EX‘ kxfx TAX * y \ K ' " XI_\_7‘L ‘ '1X\ 1 ,, _ L (:1, \ 3. / x7 : : 3yk XI’VVI» “ X“ * ) 1/ (XLV7 (b) (10 points) Find fmfy , and fmy for fins, 9) = 3:4 — 3682212 + 1/2- 384: m5 a 5X71 R7 2' ’éxlx/ +l\/ _ 9 \ fl . Ry 2' My 1‘ 3;(‘*X“é><7 ) *“RXV 12 Problem 9 (16 points) A fruit fly population starts with 20 flies. After 5 days, the population size is 100. Assuming that the population grows at a rate proportional to its size, find the population after 10 days. Let yet) ’5 it 9% MR)“ at ’lamfl JC (CA ion/j) §a yCO) ’3 ‘10 am} 703—) '3 \00 (51M 4” "(Le Mn: 3 (in W51 Va) 0 Woewmm‘ *0 7% M um «7 7+) :: K 7 swig Wylie K AV ‘ k f \I‘~ .4 Sag/ink“ (a. $47» :- 5' ME 9M7. : Ki *c‘ :9 7H): KHQ :Cem We ACiA +1: K N C‘ \/(o) :10 2) :10 1 Cam 3 C J}/‘ C‘Ké ' 115 So YCLI ’ ‘10 j \00 :, :LOQSK© QR .: :9 SK:'&§:D KT - j“ ‘00 Problem 10 (16 points) (a) (8 points) Find all critical points of the function f(:c,y) = $2 + 3/2 + 22% + 4. Tc gun/l Aim (F’i‘llcql Psflk 0% g» 3d gx “*6! £7, fits/Al +92%, 0 15% :;X 3*le 0/.(7 : 175‘x1 O: 3 x50 (Dr Vi) w S0 (010) \3 Q ((Vllkrfasl “pm/(l Y5—\ , Oak/ml E) xii-{i :3 xctfi g0 (fiffl “NJ (“fifw art (nHml Vac/\\fif 14 (b) (8 points) Classify each of the critical points you found in part (a) as a minimum, a maximum, or a saddle point. a Q”: $17 ‘ I szw : a A as”- m7) XXV : KO,O) ONO D) j‘ (JK’O) (nl gal-1-0:(fya __ ,,,,,, A, gmkoio) Z“, .150 gu (0,0) (’1 MVM‘MVM W1 ,«0 Alfifl) : \l-l)'l * (203.) 1‘ 02 ~ 9 : — g <0 30 ($1 )'\) \S a SMXR gen/er (“\E *9 : (QCAMQ‘v («16,1 f « Xéo _/——’/ ‘ 15 Problem 11 (16 points) Find the extreme values of the func— tion f (51:,y) = x2 + 2y2 on the circle 3:2 + y2 = 1. (Hint: Use Lagrange multipliers.) \ , i \Nt WM *0 wximikv Row) Svlage JV ‘(0 TLL 44%)”va QlXp/l ’3 O) w m 7 ix») : X1 ‘\\/I ,\ “\‘W «le‘rw Odcvv/ aft (r:\‘}(a\ gal/Cl! aSK iba Sfixn¢5§be\ \:(><Z,‘~~//>\ : [7) J ly)\/) : X1 397' l fi/Q C( (ml Quiméf)’ P " >\lX\ iyx—l) 3'0 {MO} aw} (4)03 m Vos’fibu exit/5M ROM: illom : g; («Ml imoi 39b\,0)~:1 / D. \‘S MAX. d :l. U ‘VL\C_ Mil/H *917ISchfcvllagu,y)ro >0 Problem 12 (16 points) Evaluate ffR a: dA, Where R is the region in the my-plane below y = \/ 25 —— x2 and above the :c—axis. «ea. f y: 1 :-« (XV—1, “7 A" +7“ 1, 1"; \‘/\~/ I (A C‘T-:.\Q A (“a/Hui SI (4an a}? S 21‘. g 7' 1:3:( DS~X1)/ \Xffi :0 - 0 1156 make; sense mu SUD/)ZX M ’K \r SVMMY/eg mm 36% YWM (Su M Amati/Le garb (Nanak We. (mt/q 17 ...
View Full Document

This note was uploaded on 06/30/2010 for the course CAL 100 taught by Professor Bill during the Spring '10 term at UC Riverside.

Page1 / 17

pfsol - Math 16C Final Exam Part 1 Problem 1(12 points...

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online