Electric Circuits 8th Edition 21

Electric Circuits 8th Edition 21 - Number 785 8.6 The Roots...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
17.7 Circuit Applications 714 17.8 Parseval! Theorem 717 Sunnary 724 Problens 725 Chapter 18 Two-Port Circuits 730 18.1 The Terminat gquations 731 18.2 The Two-Port Pa'amelers 732 18.3 Anatysis of the Terminated Two,Port Cit.uit 741 18.4 Interconneded Two-Poft Ctr.uits 747 Sunnaty 751 Prcblens 752 Appendix A The Solution of Linear SimultaneousEquations 759 A.1 Pretiminary Steps /59 4.2 Crame/s Method 760 4.3 The Characteristic Determinant 760 4.4 The Nurnerator Determinant 760 4.5 The Evaluation of a Determinant 761 4,6 Mati.es 764 A.7 Matrir Atgebra 765 A.8 Identity, Adjoint, and Inverse Matri(es ZZ0 4.9 Partitioned Matrices 772 4.10 Apptications 776 Appendix B Complex Numbers 781 8.1 Notation 781 8.2 The Graphirat Representation ot a Complex Nurnber 782 8.3 Arithmeti. operations /83 8.4 Useful Identities 785 8,5 The Integer Power of a Complex
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Number 785 8.6 The Roots of a Complex Number 286 Appendix C More on Magnetically Coupled Coils and Ideal Transformers 787 C,1 Equivatent Circuits for Magnetically Coupted Coils 787 C.2 The Need for ldeal Transformers in the Equivalent Circuits 792 Appendix D The Decibet 797 Appendix E Bode Diagrams 799 E.1 Reat, First-0rder Poles and Zeros 299 E.2 Straight-line Amptitude Plots 800 E,3 More Accurate Amplitude Ptots 8ra E.4 Straight-Line Phase Angte Plots 805 E.5 Bode Diagrarns: Complex Poles and Zeros 807 8.6 Amotitude Ptots 809 E.7 Correcting Straight-Line Amplitude Ptots 810 E.8 Phase Angle Ptots 813 Appendix F An Abbreviated Table of Trigonometric Identities 817 Appendix G An Abbreviated Table of Integrals 819 Appendix H Answers to Selected Problems 821 Index 839...
View Full Document

This note was uploaded on 07/05/2010 for the course EE 100 taught by Professor Boser during the Spring '07 term at University of California, Berkeley.

Ask a homework question - tutors are online