section4_3

# section4_3 - Section 4.1 Polynomial Functions and Basic...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 4.1 Polynomial Functions and Basic Graphs Page 1 of 23 Basic Graphs: Section 4.1 Polynomial Functions and Basic Graphs Page 2 of 23 Example 1: Sketch the graph of the polynomial function P ( x) = ( x + 1)3 by transforming the graph of the function y = x3 . Solution to Example 1: Section 4.1 Polynomial Functions and Basic Graphs Page 3 of 23 Example 2: Sketch the graph of the polynomial function P ( x) = x 4 + 1 by transforming the graph of the function y = x 4 . Solution to Example 2: Section 4.1 Polynomial Functions and Basic Graphs Page 4 of 23 Example 3: Solution to Example 3: Section 4.1 Polynomial Functions and Basic Graphs Page 5 of 23 Example 4: Solution to Example 4: Section 4.1 Polynomial Functions and Basic Graphs Page 6 of 23 Example 5: Solution to Example 5: Section 4.1 Polynomial Functions and Basic Graphs Page 7 of 23 Section 4.1 Polynomial Functions and Basic Graphs Page 8 of 23 Example 6: Solution to Example 6: Section 4.1 Polynomial Functions and Basic Graphs Page 9 of 23 Section 4.1 Polynomial Functions and Basic Graphs A Strategy for Graphing Polynomial Functions Page 10 of 23 Section 4.1 A Strategy for Graphing Polynomial Functions Page 11 of 23 Section 4.1 A Strategy for Graphing Polynomial Functions Page 12 of 23 Section 4.1 A Strategy for Graphing Polynomial Functions Page 13 of 23 Example 1: Use the strategy for graphing polynomial functions to sketch the graph of P( x) = x3 − x 2 − 2 x. Solution to Example 1: Section 4.1 A Strategy for Graphing Polynomial Functions Page 14 of 23 Example 2: Solution to Example 2: Section 4.1 A Strategy for Graphing Polynomial Functions Page 15 of 23 Example 3: Solution to Example 3: Section 4.1 A Strategy for Graphing Polynomial Functions Page 16 of 23 Example 4: Solution to Example 4: Section 4.1 A Strategy for Graphing Polynomial Functions Page 17 of 23 Example 5: Solution to Example 5: Section 4.1 A Strategy for Graphing Polynomial Functions Page 18 of 23 Section 4.1 A Strategy for Graphing Polynomial Functions Page 19 of 23 Example 6: Solution to Example 6: Section 4.1 A Strategy for Graphing Polynomial Functions Page 20 of 23 Section 4.1 A Strategy for Graphing Polynomial Functions Page 21 of 23 Exercise Set 4.1: Polynomial Functions Sketch a graph of each of the following functions. 1. 2. 3. 4. 5. 6. P ( x) = x3 P ( x) = x 4 P ( x) = x 6 P ( x) = x5 P ( x) = x n , where n is odd and n > 0. P ( x) = x n , where n is even and n > 0. Match each of the polynomial functions below with its graph. 9. P ( x) = ( x − 2)( x + 1)( x + 4) 10. Q( x) = −( x + 2)( x − 1)( x − 4) 11. R ( x) = −( x − 2)( x + 1)2 ( x + 4)2 12. S ( x) = ( x − 2) 2 ( x + 1)( x + 4) 13. U ( x) = ( x + 2)2 ( x − 1)3 ( x − 4) 14. V ( x) = −( x + 2)3 ( x − 1)3 ( x − 4)2 Answer the following. 7. The graph of P ( x) = ( x − 1)( x − 2)3 ( x + 4)2 has xintercepts at x = 1, x = 2, and x = −4. (a) At and immediately surrounding the point x = 2 , the graph resembles the graph of what familiar function? (Choose one.) y=x Choices for 9-14: A. 40 y = x2 y = x3 y B. 80 y (b) At and immediately surrounding the point x = −4 , the graph resembles the graph of what familiar function? (Choose one.) y=x x −4 −2 2 4 −4 −2 40 x 2 40 y = x2 y = x3 −40 (c) If P ( x) were to be multiplied out completely, the leading term of the polynomial would be: (Choose one; do not actually multiply out the polynomial.) x3 ; − x3 ; x 4 ; − x 4 ; x5 ; − x5 ; x 6 ; − x 6 C. −2 400 y x 2 −400 4 D. y 10 x −4 −2 2 4 6 8 8. The graph of Q( x) = −( x + 3) ( x − 5) has xintercepts at x = −3 and x = 5. (a) At and immediately surrounding the point x = −3 , the graph resembles the graph of what familiar function? (Choose one.) y=x 2 3 −800 −10 1200 y = x2 y = x3 E. y 10 F. 200 y (b) At and immediately surrounding the point x = 5 , the graph resembles the graph of what familiar function? (Choose one.) y=x x −6 −4 −2 2 4 6 −2 2 4 x y = x2 y = x3 −200 (c) If P ( x) were to be multiplied out completely, the leading term of the polynomial would be: (Choose one; do not actually multiply out the polynomial.) x3 ; − x3 ; x 4 ; − x 4 ; x5 ; − x5 ; x 6 ; − x 6 −10 Exercise Set 4.1: Polynomial Functions For each of the functions below: (a) Find the x- and y-intercepts. (b) Sketch the graph of the function. Be sure to show all x- and y-intercepts, along with the proper behavior at each x-intercept, as well as the proper end behavior. 15. P( x) = ( x − 5)( x + 3) 16. P( x) = ( x − 2)( x − 6) 17. P( x) = − x( x + 4) 18. P( x) = −( x − 3)( x + 1) 19. P( x) = ( x + 3)2 20. P( x) = −( x − 6)2 21. P( x) = ( x − 5)( x + 2)( x + 6) 22. P( x) = 3x( x − 4)( x − 7) 23. P ( x) = − 1 ( x − 4)( x − 1)( x + 3) 2 24. P( x) = −( x + 6)( x − 2)( x − 5) 25. P( x) = ( x + 2)2 ( x − 4) 26. P( x) = (5 − x)( x + 3)2 27. P( x) = (3x − 2)( x + 4)( x − 5)( x + 1) 28. P ( x) = − 1 ( x + 5)( x + 1)( x + 3)( x − 2) 3 42. P( x) = x3 − 2 x 2 − 15 x 43. P( x) = 25 x − x3 44. P( x) = −3x3 − 5 x 2 + 2 x 45. P( x) = − x 4 + x3 + 12 x 2 46. P( x) = x 4 − 16 x 2 47. P( x) = x5 − 9 x3 48. P( x) = − x5 − 3x 4 + 18 x3 49. P( x) = x3 + 4 x 2 − x − 4 50. P( x) = x3 − 5 x 2 − 4 x + 20 51. P( x) = x 4 − 13x 2 + 36 52. P( x) = x 4 − 17 x 2 + 16 Use transformations (the concepts of shifting, reflecting, stretching, and shrinking) to sketch each of the following graphs. 53. P( x) = x3 + 5 54. P( x) = − x3 − 2 55. P( x) = −( x − 2)3 + 4 56. P( x) = ( x + 5)3 − 1 57. P( x) = 2 x 4 − 3 58. P( x) = −( x − 2) 4 + 5 59. P( x) = −( x + 1)5 − 4 60. P( x) = ( x + 3)5 + 2 29. P( x) = x( x + 2)(4 − x)( x + 6) 30. P( x) = ( x − 1)( x − 3)( x + 2)( x + 5) 31. P( x) = ( x − 3) ( x + 4) 32. P( x) = − x(2 x − 5) 3 3 2 2 33. P( x) = ( x + 5) ( x − 4) 34. P( x) = x 2 ( x − 6)2 35. P( x) = ( x + 3)2 ( x − 4)3 36. P( x) = −2 x(3 − x)3 ( x + 1) 37. P( x) = − x( x − 2)2 ( x + 3) 2 ( x − 4) 38. P( x) = ( x − 5)3 ( x − 2) 2 ( x + 1) 39. P( x) = x8 ( x − 1)6 ( x + 1)7 40. P( x) = − x3 ( x + 1) 4 ( x − 1)7 41. P( x) = x3 − 6 x 2 + 8 x ...
View Full Document

## This document was uploaded on 07/14/2010.

Ask a homework question - tutors are online