hw4 - Z dx x p 4.5. Determine whether the improper integral...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
CALCULUS 1501 WINTER 2010 HOMEWORK ASSIGNMENT 4. Due February 5. 4.1. Evaluate Z 1 0 xdx 2 - x 4 4.2. Evaluate Z y 3 + 1 y 3 - y 2 dy 4.3. Determine whether the following improper integrals converge or diverge. Evaluate the integral if it converges. (i) Z 2 dx x 2 - 1 (ii) Z 0 cos2 xdx (iii) Z 1 arctan x x 2 dx 4.4. (i) Investigate the convergence of the integral Z 1 0 dx x p for different values of p > 0. (ii) Use (i) and properties of Z 1 dx x p to determine convergence of
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Z dx x p 4.5. Determine whether the improper integral Z 1 sin 2 3 x 3 x 4 + 1 dx converges or diverges. Do not evaluate the integral if it converges. 4.6. Use the identity Z - e-x 2 dx = to evaluate (1 / 2) and (5 / 2). For relevant denitions see Lecture 3 of the Course Notes. 1...
View Full Document

Ask a homework question - tutors are online