Masini electrice II - No iuni generale 3.1.3....

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: No iuni generale 3.1.3. Înfáçurári de curent alternativ y " $ # ! ! % % & ' ' ' Nc ' $ N c = 2mpq # înf urarea *+ întreag % , ! = / 2 m ( zona de dus) zon de întors. & ! # 2p Nc ! ! # # ( N c , p) Nc = mt . / 01 # " *2 ) ) " ! *3 # Nc = m Nc = 2m # # 4 5 0 3.1.3.2. Înfáçurári trifazate íntr-un singur strat $ % " N c = 24 p = 2 m = 3 ) t=2 $! 5$ *$ $ ! 7 # 6/ A/ B / C / ! 2 3 Nc =4 2m # 5 ) # * 5* ) *2 = / *3 22 = = 24 6 4 # # ! 5*6 ! % +2 3 8 / 6 % 9 : 5 55 / % ; # ! Fig. 3.23. Steaua t.e.m. pentru înf surarea analizat . ! – ! = ) % < # # * – # # > # * 56 ? = " # > # * 5+ ( # * 5* = 3.1.3.3. Înfáçurári trifazate ín douá straturi , , y=y = @ / # / Nc m # ! # # # 4 ? # * 58 N c = 18 p = 2 m = 3 q = 3 / 2 6 0 > # * 58 $ 3.1.3.4. Înfáçurári ín colivie ; ! Nc # * 59 " > m = Nc N = 1/ 2 ! < # Fig.3.29. Înf urare în colivie. 3.2.2. T.e.m. indusá íntr-o ínfáçurare de curent alternativ $ 0 A B # # * *5 / !0 0v 10 0 A0 B # 0! 0 1 1 "10 0 A B 1 A 0 0 $ 1! 10 1 #0 1 0 + # ! A0 T.e.m. indusá de armonica fundamentalá de spaþiu B1 C ! 0 1 A # $ 01 0 " U ec1 f 1 = pn 2p = Nc ! U ec1 = 1 2 * 52 !0 0# B1li v # li , * 53 B v = Dn = 2 p n U ec1 = >% 1 1 2 B1l i 2 p n * 58 0 = B1 ( x)l i dx = l i B1 sin 0 0 xdx = 2 B1 l i * 59 * *: U ec1 = # (0 1 > 0 B # x 2 f1 1 1 # * *5 0! 0# A =0 0 1 01 0 # 0 # x % B 0 1 B 1 1 1 1 A B A0 # ) x, # 0# A 1 0 47 ( = 1 0 # * ** 1 # # 0 U eci1 % =c 2 0 > # * *5 / # 01 &B A 0 1 A 0 > # * ** C 1 # 01 A0 " @ U ec1 = R U eci1 = 2 R sin 2 ** * *5 * ** 0 A 0 1 1 0 C 1 # y y U eci1 = U ec1 K i1 c c K i1 = sin 2 2 0 B 01 D " 0 U es1 # 5 *: # * *6 U es1 = 2U eci1 sin y = 2U eci1 K s1 2y y K s1 = sin 2y y = y K s1 = 1). * *6 / 10 0 T.e.m. indusá íntr-o bobiná cu sb spire 3 U eb1 = s bU es1 * *+ > # * *6 C 01 " 0 > # * *+ C 01 0 C ' 1 1 0 0 0 # * *2 1 1 " U eq1 = q k =1 (U ebk )1 ( 2p )/ Nc (U eb1 )1 = (U eb 2 )1 = ... = (U ebk )1 = ... = (U ebq )1 = # A A 0 q 2 0@ U eb1 = 2 R sin 2 ; U eq1 = 2 R sin * *3 2 U eq1 = qU eb1 K r1 K r1 = sin q / 0 # K r1 , 10 2 0B" 1 #0 1 q sin U eq1 0 * 6: U e1 = 2 pU eq1 U e1 = 4 pqsb K i1 K s1 K r1 K B1 &0 = K i1 K s1 K r1 f1 2 0 N = 2 pqsb 10 1 *6 0 8 0 U e1 = 2 f 1 NK B1 1 @A ! 0 10 0 1" U e1 = pU eq1 N = pqsb 2. T.e.m. indusá de armonica de ordinul B 1 ) p=p = = 2p = Nc * 65 * 62 > !A 0 f = p n = pn = f1 * 63 * 68 A * +5 0c 0 ! A 0 0 yB Ue = 3. T.e.m. indusá pe o fazá 2 f NK B 0 =1 Ue = ! A1 $ 0 U e2 1 0y 1 !c B ! y Cãmpul magnetic pulsatoriu (0 0 B 1 ( x, t ) = B 1 sin x sin t 0 * 29 # 1 > # * *9 /B # !0 0 # @A 0 # ! 1 B A ! 0 0! # * *9 0 t B < B 1 ( x, t ) = 1 B 1 sin 2 x+ 1 B 1 sin 2 t+ x * 3: 9 $" # A A ! 0B ! nd = f p f p # # 1 vd = 2 f 1 !B ! )B *3 ! ! < ni = vi = 2 f * 35 3.3.2. Cãmpul magnetic ínvãrtitor circular 1 1. Cãmpul magnetic ínvãrtitor circular produs pe cale electricá $ 0 0 0 0 0 0 10 0 10 0 0 A< i A = 2 I sin t i B = 2 I sin iC = 2 I sin t t 2 3 4 3 * 3* / 0 1 A% 1 !B B A ( x, t ) = B B ( x, t ) = B C ( x, t ) = B 10 # * 6: < 1 B sin 2 1 B sin 2 1 B sin 2 t t t x+ x+ x+ 1 B sin 2 1 B sin 2 1 B sin 2 t+ t+ t+ x x x 4 3 8 3 0 11 B # 0B B ! 0 > # * 6: B # 1 !B * 36 : 0 $" 0 /B # A 1 t 1 % ! x 4 < .: 0 ( < A 3 B ( x, t ) = B sin 2 0 0 0! * 3+ 1 B A * 32 x) 0 B ( x , t ) = B ( x + x, t + t ) 0< t x= (t + t ) A < (x + * 33 (0 v= ( (0 " 0 ( 0 ( x f =2f n= t p !E: B # 01 ! % ;% # * 6 0 0 1 0< 3 B ( x, t ) = B sin t + x 2 0 0!0 1 A< x f vi = = 2f ni = t p vi < 0 B # 01 #! % ;% # * 6 * 38 0 A * 39 ! * 8: ! 10 ( 2. Cãmpul magnetic ínvãrtitor circular produs pe cale mecanicá $ 0 0 0 A # * 65 %A 0 0 01 B # A # 1 0 0 A 0 " A0 % A0 # * 65 % A % A0 # B ( x) = B sin eR = B sin p eR 4@ B !< gR # - "# A0 4 @ ) "# 0 A0 gSR % % # 4$ # ) gS gR $ A0 % 0 # 4$ % # B gS = (0 " 1 < # 0 " A0 > # * 65 B # 1 !B gSR + 0 gR * 85 % ! 0 0 A 4$ A< * 8* A < * 86 % A *8 / A.R. A 0# 0 B # * 85 ! A B # B ( x) = B sin p ( gS gSR ) B 0 .: 1 A.S . gSR = t p gS = eS = x 1 A < gS B ( x, t ) = B sin( p p t ) = B sin x t * 8+ 0 1B $" 0 F A ! B 0 B # 0 # 0 A 1 !B 1 1 0 1. MAÇINA SINCRONÁ 1.PÁRÞI COMPONENTE ÇI MATERIALE UTILIZATE 0 0 ! 0 n1 = 60 f 1 / p , 0 A #0 A 5 0 0 % 0 10 A 0B # 01 0 0 !0 # ! 0 A A A ! ! 0 0 0 0 A 01 0 (0 1 A # " # " 1 0 0 5 1 A A 0 A- ># " $A 0 ! 0 0 A 0 ># 5 $ A " 0 ! 0 0 1 A 0 A # 0 C A A (. "5 G A A! – # A 0 # A 0 # hidrogenerator # # 0 # 1 A turbogenerator 0 0 0 ! " # 0 0 1 A 0 A 0 1 < # A ) . 2"3 # 0 %! 0 ! 1 * < (. 6" 2 – # Statorul 0 ! 0A ! Rotorul B 1 ! 1 A ) . "5 %0 " # 0 0 !< 0! A 1.1.1. Párþile componente ale statorului Carcasa # A 0 A1 A 0 0 Miezul feromagnetic al statorului B # ! 1 0 0 0 0 % # :+ (0 # 0 H5:"5+ 0 # ! A % 0 0 # 0 ! ! ! # ! ! A 0 0, # 0 0 C !0 0 0 Înfáçurarea statorului e 10 01 " 1 ! % 0 0 01 0 > 10 0 0 A A 0 , ! F.*" + IJ , 1 0 0 0B " 1.1.2. Párþile componente ale rotorului A. Rotorul cu poli aparenþi $ 0 +:: K B A ! 6 0 , 10 @ 0 % A A 1# 10 %A Miezul feromagnetic al polilor % 0 A # "5 + # 1 ! =# 1 0 ># 5" 0 0) *" =0 +" # =# B 0 A A 0 # 0 0 0 B# ) 6" 0< " 0 . 0 0 ) ) 1 0 01 C /B 1 0 B % 0 0 0 0 % 0 0 0 = Infáçurarea de amortizare (de pornire în asincron) 1 0 1 0 7 A 0 # 0 " 10 # " 10 Infáçurarea de excitaþie % 0 0 0 B. Rotorul cu poli înecaþi $ 01 A ! ! # Miezul feromagnetic al rotorului ::: IJ4 % 0 0 0 %0 B0 A + 1 C A K* # ! % 0 0 AB A 0 % A1 0 # 0 5K* A # = * A0 0 # 0 % 1 / % 0 0 6 5 ! " A B Infáçurarea de excitaþie % 0 0 = Infáçurarea de amortizare 1 0 0 ! 5K* 0 10 ! 0 1 1.2. PROCESUL DE REACÞIE AL INDUSULUI , 10 B < " " "1 0 " A " A A 1#1 %A A A ! A 0 10 0 10 0 # 0 # 0 ) 0) 0 ) ) ) 0%0B /B $ 0 B A # 01 A 0 1.2.1. Reacþia indusului la maçina cu poli plini Cãmpul magnetic inductor , 0 010 %A 0 0 5K* A 01 % A 2 0 A !B # 0< 0 1! ( A A 1 A B E ( x) = 0 A E µo 2p E // ( x) ( x) B # ) < A ( x) " " 0 // ( x) "1 0 1 < 0 A % ! A 0 ) ! A # A A 0 / ks // kC A # % / $ 0 A IE ( x) = k s k C ( x ) 5 # + 0 000 0 01 10 B # 1 0 BE 0 B E1 ( 00 % 1 #= 0$ 0 0 B 0 0 ># +$A B # # # a # 0 % '% ! 0 Reac"ia transversalá a indusului ! 10 !0 = (U eE , I ) = 0 I = I q ( I d = 0) L # 2 L 0 0 L0 0 ! L 0 E /2 1' 1 % d1 , d 2 3 # 1 ! 2 1 , M 0 ! L # # L0 =0 L # M /@ # L ( 0 ! ># – A A N L % B ! ( A % # 2 2@ 0 L ! 0 A 0) " # 0 ! < B L ! L 1 0 < + A L 0 # A 0 # 3 3 < 0 01 % ' 01 0 # Baq ( x) = = ct., L 0 µo 2p aq // ( x) ( x) B ! 1 2 1 # ; 0 # a) A !0 A 0 A # A 0 ! # # # 3 A Maçiná nesaturatá # 01 1 0 ! BE 8 0 , 0 A ! # A A # 2 0 0 A 1 0 ! 0 Bmin 0 M max ># 3 " >% S abcd ( # G7 # 0 0 A b) A 0 ! 0) " A A 1 # 0 # A 0 1 0 0 0 0 0 1 0 1# S ABcd A 0 0< A 0 # G4 0 % # # 0 # 0 =E 1# Maçiná saturatá # 0 $ 0 0 A A A A 0 1# 0 ! # 3 # $ !0 # # S abcd ! S ABcd 0 % A 1 0 B <E Efectele reacþiei transversale sunt urmátoarele: # # " % 1 ! 0 # 0) ) A0 % 0 9 " 0 1# % 0 A 0 # A = 1 0 A0 Reacþia longitudinalá a indusului ín cazul 0 8 L , # # 0 I = I d ( I q = 0) $ # M 1 8 L ! 1 ' /2 0 1 % 1 !0 0 ! /@ B # 0 – ># A A 8@ # % # L 0 # A 0 0) " B B # = /2 / ! $ L = 0 L %0 A # 0 "= /2 0M I, I E ) L 0M L / 0 # 8 M L # N #0 ! !L L 0 Reacþia longitudinalá a indusului ín cazul = /2 0 !0 9 0 1 I = I d ( I q = 0) $ 0 0 A L ! 0 # 0 0! 5: 0 , # B M # 1 L 1 ># 9 @ – A A # @ 9 L !0 0 L # 0 0 A 0) # " = /2 B # # 1 # L 0 r 1.3. ECUAÞIILE DE TENSIUNI §I DIAGRAMELE FAZORIALE 1.3.1. Generatorul sincron cu poli ínecaþi A 0 10 0 $ 0 " O 1 # 0 % 10 0 / B 0 # # 0 A< Ri + u = $u e " < > # 5* 0 @ " A10 0 0) " ) 5 $u e # " " ) 110 0 d dt 0 10 % 0 = E+ a+ % ) A ) $u e = # A 5 < * " $ E a % 1! 0 % " " " % % % % 4 E a 0 = Nk B = La i 0 E A< 6 % &" kB " E" La " L% " -1 0 =) % ! ! = L% i 0 10 ) 0 0 B B A 0 ) A) A < + u eE " u ea " u e% " 0 00 ! 4 /3 0< % 1 88 $u e = u eE + u ea + u e% 0 B ) 0 B ) 0 B 0 A 1! 0 2 1 0 2 /3 u = u eE + u ea + u e% A ! 1 Ri 55 0 # A ! A U = U eE ! U eE = j 0 + U ea + U e% 0< RI ! E 1 % 3 A < 8 2 fNK B U ea = U e% = Xa " X% " 4!B 0 # A A 0 0 A ! jX a I jX % I 0 0 31 0 !0 B B # ! 56 " !0 A) # 1 # 5+ > # 56 ( # 0 ! 0 !0 > # 5+ ( # 0 ! 0 !0 Ecuaþia de tensiuni çi diagrama fazorialá transformatá $ 1! A< U ea + U e% = j ( X a + X % ) I X s = X a + X% Xs " A 0 / U es = jX s I 9 5: 5 5* A (# 0 < U = U eE + U es R I 01 # 52 0 ! 55 !0 Ecuaþia de tensiuni çi diagrama fazorialá simplificatá #= (# 00 0 U = U eE + U es 0 A0 5* 01 # 53 > # 52 ( # 0 0 > # 53 ( # 0 0 1.3.2. Generatorul sincron cu poli aparenþi 00 # 01 0 # " O 1 Ri + u = $u e d $u e = dt "% 0 10 = E + ad + aq + % E ad aq 1 # 5* $ A 0 56 5+ 52 "% "% "% " % ! ) A A 0 B 0% 0% # ! A # 0) 0) ) % Lad " 56 0 Laq " ! # ! % 0 0 B B 0 0 0 1 B ) A A 5+ # ! A ! ) id " iq " -1 u ead " u eaq " A ) < 58 $u e = u eE + u ead + u eaq + u e% 0 A 1! u = u eE + u ead + u eaq + u e% Ri # A U = U eE + U ead ! ! 0 1 59 % *: A < A 0 + U eaq + U e% j 2 fNK B 0< RI ! E U eE = U ead = U eaq = U e% = X ad " A A 0 0 B jX ad I d jX aq I q jX % I B A A ! # * ) X aq " > # 58 ( # 0 ! 0 !0 > # 59 ( # 0 ! 0 !0 5+ # A *: 1 # 58 " 0 ! !0 1 0 ! !0 Ecuaþia de tensiuni çi diagrama fazorialá transformatá / B 0 0 0 < U ead + U eaq + U e% = jX ad I d jX aq I q jX % ( I d + I q ) 0 X d = X ad + X % X q = X aq + X % Xd " Xq " / 4!B 0 0 A # # 59 0% *5 ** A A 0 0 U ed = U eq = # ! 0 jX d I d jX q I q 0 0 ) *6 *+ 0 01 U = U eE + U ed + U eq A # *: RI 0 ! # !0 Ecuaþia de tensiuni çi diagrama fazorialá simplificatá (# #= 00 U = U eE + U ed + U eq 0 0 A0 *2 01 # * > # *: ( # 0 0 ># * ( # 0 0 52 0 1.4. CUPLAREA ÍN PARALEL A GENERATOARELOR SINCRONE & " ) " A " N # *5 5 * 6 ! 1 # ** J $ # A 1 0 !0 1 0 ! 0 A ! 0 1 # !A 0 # O 0 # A0 A 0 B # # A 1 0# A< A 0 # L 1 B ! 10 ! ) # 0 1 # B < 0 #0 0 Verificarea condiþiilor çi modul de índeplinire al acestora A # ! 0 0 ! = 0 0 0 # A (0 A 1 0 0 %A Ug <U 0 U g >U # B0 B A # 5! A ! # A ! = 0 0 = # 1 !B Montajul la stingere 0 # *5 # # A 1 # *5 (0 0 U1 , U 2 , U 3 0 1 # *5 # # (0 1 0 L 1 0N 1 O 1 L0 53 L 1 # L L M > # *5< # " = L)" L # # # 0 U 1, U 2 , U 3 0 !0 0 % L 0 ! 1 1 # = / # A ! 0 *5 ! U1, U 4 , U 5 ! # ! A ! ! L " # ! 0 7/ $ 0 0 Montajul la foc ínvãrtitor $ # 0 (0 1 0 1 ! U1, U 4 , U 5 1 A A ! 0 0 A 0 L 0$ ! L ! # ** # ** B !0 1# U1, U 2 , U 3 1 !B 0 # 0 # 58 0 > # **< # " L = L)" # 1 !B U 1, U 2 , U 3 0 A # L !A (0 !L !0 %0 0 g # 0 *J = % 0 # 0 (0 0 !0 0 64 0 O 0 !L r g # # 1 A 0 r ! L L 0 0 A A # 1 # # # ! $ 0 0 0 0 / M 0 , U ! 01 A B0 B 1 ! A# A ! 1 1 montajului la stingere 1 = 0 M A 0 1 0 !L 1 M 1 L montajului la foc ínvãrtitor 0B 0A # Consecinþe ín cazul nerespectárii condiþiile 59 0 1 # 0 # A 0 Ug <U A 0 ! ( 0 U g >U A 0 A 0 0 ! 0 A # A A 6 1 # A !0 ! 0 1 A 0 0 1 0 0B 0 A # A A ( 0 # ( # A B 0 A 0 0 A ! 54 01 A A A *( 0 ! 6& # !A 1 00 0 # 1.5. CUPLUL ELECTROMAGNETIC AL MA§INII SINCRONE 1.5.1. Bilanþul puterilor active la generatorul sincron # *6 A A 0 < P1 " 0 0 ) PM " 0) 0 1 ) 110 # 0 ! 1 0 ) A) P2 " p m +v " PFe " # PCu " > # *6 # 7 ! < A Ecuaþia de miçcare ín regim staþionar 7 A ! *: P1 = PM + p m + v 0 (0 0 A A A 1 1 M1 = M + M 0 "! # # A 0 < *9 0 6: 1.5.2. Cuplul çi puterea electromagneticá $ #= 0 110 PM ' P2 = mUI cos " ( # 0 0 A # *+ 0 "= A A 6 0 A < PM = mUI cos cos + 6* + mUI sin sin $ 1! 0 I d = I sin si I q = I cos 66 ( # 0 1 # *+ A 0 0% U U cos U sin I d = eE Iq = Xd Xq N L0 A > # *+ ( # 6* 66 6+ A 0 0 # < PM = mUU eE mU 2 1 sin + Xd Xq 2 1 sin 2 Xd 6 65 0 A 62 0A A / ! M= $ 0 # # 0 0 1 1 sin 2 Xd * ( ( ) p - mUU eE mU 2 1 sin + + 2 Xq + Xd , !0 0 < ! 63 # 0 B * -Componenta principalá % 0 0 %A p mUU eE sin M/ = Xd "Componenta auxiliará % 0 0 0 0 %< p mU 2 1 M= Xq 2 // 0 63 A 1 sin 2 Xd 63 1 Q= 00 !0 Q = mUI sin " = mUI sin( )= = mUI sin cos mUI sin cos Id , Iq mUU eE mU 2 1 cos + Xd Xq 2 1 cos 2 Xd mU 2 Xq 68 A < 69 0 0 $ 0% !0 %A 1 0! 0 % 0 0 0 0 0 0 0 / Caracteristica unghiular staticá 1U = ct. . PM , M = f ( ) 0 f = ct. . I = ct. /E La maçina cu poli ínecaþi 1 0% ! # A Xd = Xq = Xs < +: A 0 + 0 0 +5 0 0 # p mUU eE M =M/ = sin Xs # 0 01 # *2 La maçina cu poli aparenþi # 0 # *2 *5 0 > # *2 / " ; # # ! !0 # 0 # 1 0 M = f( ) A) " *2 0 # A < 1 1.6. CARACTERISTICILE DE FUNCÞIONARE ALE GENERATORULUI SINCRON 1.6.1. Caracteristicile generatorului sincron autonom 1.Caracteristica de funcþionare ín gol 4 0 0 0 A0 < 1n = ct. . U 0 = f ( I E ) 0 f = ct. .I = 0 / U0 +* U 0 = U eE A U eE 0 % # 1 # U 0 = f (I E ) # 1# ( L % A 0 = f (U mm ) 0 < A 0 0 > # *3 A / 1# ** %A =#1 0 10 0 0 00 !0 A 0 0B 0 % A ! A 0 % 0B % A (0 ! 0 /B ! 0 0 0 # $ # 0 2.Caracteristica de scurtcircuit 0 = L 1 f = ct. I sc = f ( I E ) 0 /U = 0 A10 0 0 ! 1 # 1 L 0 L0 M 0 1 L L +6 B /2 M 1# , A PEE@ @L # N # ! L M @ ! M 0 N L I sc = f ( I E ) ! 0 01 , 0 M L L 0 % L 0 ) # ++ ! . 3. Caracteristicile de funcþionare ín sarciná L 1 I = ct. . U = f ( I E ) 0 f = ct. .cos " = ct. / ; L0 0 0 " =0 / 1# .: 01 0 +3 1 0 0 !0 *6 0 ! . " 0 G 0 " > # 6: / # 1 0 ># 6 / # % 4. Caracteristicile externe L 1 I E = ct. . U = f ( I ) 0 f = ct. .cos " = ct. / +8 # M L M M1 0 ! UN , IN (0 # 11 , 1# 0 0 0 % ! !0 ! 0 1M " = / 2) 1 0 F # 5. Caracteristicile de reglare 4 L *+ 1U = ct. . I = f ( I E ) 0 f = ct. .cos " = ct. / +9 % L > L M ! I E0 F ! " (0 (" = / 2) # 1# 0 N # 65 " F. ! # # U e' / 10 L 0 F 0 > # 65 / # # # # 0 L F. %L 00 1.6.2. Caracteristicile de funcþionare ale generatorului sincron cuplat la reþea 1.6.2.1. Funcþionarea generatorului sincron la cuplu constant çi curent de excitaþie variabil a) Funcþionarea ín gol > 0 0 L L 0 0 L U eE = U .: =0 # # 6* $" I Eo " %A A 1# # 0 U eE = U (0 I E > I Eo U eE 1 %L > # 6* "! L 1 0 0 ! # =0 A 0 Rs *2 0 I= 1 # 6* # ! A (0 I 4 1J N % !1 L A A 0 L0 L !0 0! ! 0 L0 U eE U U = jX s jX s # 0 % L 0 L # 1 0 # 1# A !0 1 L = #1 # 2: % L I E < I Eo U eE # # 6* 01 # % 6+ L 00 00 !0 A 1# 0 P2 = 0 0 01 0 cos " = 0,8 J c) Caracteristicile ín V < 1U = ct. . I = f ( I E ) 0 f = ct. . P = ct. / 1 2 N 1 L / 0 #0" 0 0 I = f (I E ) J / !M ! ! 0 L 01 1J 0 100 L0 QH: > # 6+ ! # -. % QE: / 1 J ! # % *3 1.6.2.2. Funcþionarea generatorului sincron la cuplu variabil çi curent de excitaþie constant (0 L 0 # # 28 0 L U eE , U 0 U eE 1 0 I !0 0 0 0 0 !0 ( # 1 # 62 / I 0 !0 0 U L 0 !0 (0 0 0 U # L L 1 0 # ! !0 0 0 , 0 $ L L 0 U eE 0 L0 " 0 # 62 $ 0 !0 # !0 > # 62 J A 1 0 0 !0 L 01 # %L B 01 10 !0 0 1 # # 0 1 ! 0 0 0 0 # # 0 # ! 0 a) Stabilitatea staticá a maçinii sincrone 0 L # P= f( ) M 1 A (0 0 A # 63 4 A 1 # A !< M1 = M + M 0 # 25 M1 0 / 0 M / 1 0 *8 0 0 # A # 1 4D D/ A / / M1 = M + M 0 2* > # 63 $ ! 0 M 1// D A 0 ! $ # 1 1 A) 0 ! < A M1 0 # M // 1 0 0 # # A 1 4R // = M + M0 1 B 0 # 1 B/ # # A A A A 0 // 0 R 0 26 7 25 1 0 # 0 / M1 D 0 0 # M1 / 1 / A 0 M /// 1 1 0 zona de funcþionare stabilá # 0 # = ( 0 ÷ / 2) zona instabilá = ( /2÷ ) # 63 63 " 0 A 0 # 0 0( !0 0 # o o 20 ÷ 30 B 10 ) P 1 K m = M max = = 2 ÷ 2,5 2+ PMN sin N *9 1.8. FUNCÞIONAREA GENERATORULUI SINCRON ÍN REGIM STAÞIONAR NESIMETRIC A A A B A B A $ 0 #= 0 # A A A # 0 < 1 0 0 A A 0) ! 1 A 0 B ! % # " 0 ! 1! Zd B Zi B 0 I A , I B , IC 0 U A, UB , UC # 0 A 0!0 Z d = R + jX d Z i = R + jX i " A 0 A " A !0 " A # 0 < I Al , I Bl , I Cl ) 0 0 Z h = R + jX h A 1 A 1 ) A B % 0B 0 A < ) ) 0 10 0 B 39 B ) B Zh # 4 " " " > A0 # 1 0 !0 # 1 0 < A 0 @A V a,V b,V c 1 6: Vh Vd Vi 11 1 =1a 3 1 a2 1 a a 1 a a2 0 Va Vb Vc Vh Vd Vi 2 8: ! ! Va 0 1 1 2 Vb = 1 a 1a Vc 8 F # 0 I Ai 3 5% I Ad 1.8.1. Regimul de scurtcircuit bifazat al generatorului sincron / 0 0 0 1 % AB1" # 0 # +5 0 0 0 1 A < > # +5 $ I A = 0 ) I B = I C = I k2 # U BC = U B U C = 0 8* A 0 0 0 1! 0 4 < 1 1 1 .U Ah = 3 (U A + U B + U C ) = 3 (U A = 2U B ) . 1 1 . 2 2 0U Ad = U A + aU B + a U C = U A + U B (a + a ) 3 3 . 1 1 . 2 2 .U Ai = 3 U A + a U B + aU C = 3 U A + U B (a + a ) / ( A 86 !0 0 U Ad = U Ai A ( ) [ 86 ( ) [ 6 1 1 . I Ah = 3 (I A + I B + I C ) = 0 . 1 1 1 . 2 2 2 82 0 I Ad = I A + a I B + a I C = I B (a a ) = I k 2 (a a ) 3 3 3 . 1 1 1 . 2 2 a) = I k 2 (a 2 a) . I Ai = 3 I A + a I B + a I C = 3 I B (a 3 / $ !0 0 ! 0 0 < I Ad = I Ai 83 ( A # 1 0 U U es = U + jX s I = U eE 88 4 0 A 0 4 0 0 B B 0! A< U Ad + jX d I Ad = U eA ( ) ( ) U Ai + jX i I Ai = 0 (0 8+ U Ah + jX h I Ah = 0 0 A 0< jX i I Ai = U eA A 83 U eA U eA I Ad = =j j( X d + X i ) Xd + Xi 1! !0 ! < U e0 I Ad = Xd + Xi jX d I Ad A 89 1! 89 A 9: 0< 9 4 95 > # +* ( # " <" A 0 ! 0 ) 65 0 # 10 0 / 2 A0 # +* - +* / A A " 01 4 # 0 B 0 # < ! 0 1 0 # # +* 0 1 0 9* I k 2 = I B = I Bd + I Bi + I Bh = $ 1! = a 2 I Ad + a I Ai + 0 = I Ad (a 2 A < a=e j 2 3 a) 1 1 / 1 3 +j 2 2 4 j 1 3 a2 = e 3 = j 2 2 9* AB 9 A < U eA I k 2 = j 3 I Ad = 3 Xd + Xi ! !0 ! U e0 Ik2 = 3 Xd + Xi = 96 9+ < 92 1.10. MOTORUL SINCRON 0 # (0 % % L M " L # B 1 !M # # A A 63 0 # / 0 ! > # 26 0 0 0 0 M 01 A0 ! 0 1 L 6* 0 ! 0 M0 !4 00M M = M arb 1 0 1.10.1.Ecuaþia de tensiuni çi diagrama fazorialá # 26 " 10 ! "0 0 A 0 4B O 0 A 1! Ri u = $u e ( # A # A< d $u e = dt % 0 10 0 = E + ad + aq + % "% % ad " % aq " E # " < 6: 6 < 65 10 A A A A u ead U ead u eaq U eaq 0 ! % 0% 0% # ! A A) 0) 0) 0 6* % 66 % " % 0< u = u eE # / A # # 2+ = U = U eE A u e% + Ri 1 U e% + R I # ! !0 <0 # 0 0 0 % % 0 A U eE # L 0 0 0 0 !0 1 ! # 22 P1 = mUI cos " > 0 1 U L !0 1 0 L !0 ! 0 %L Q = mUI sin " < 0 B Q = mUI sin " > 0 B # 2+ # 22 66 0 > # 2+ ( # 0 0 !0 > # 22 ( # 0 0 !0 1.10.2. Bilanþul puterilor active la motorul sincron # 23 A A 0 A< P1 " 0 !0 0 A) PM " # 0 0) > # 23 7 A ! > # 28 $ A A 0 6+ P2 p m+ v PFe PCu " " " " 0 1 1 110 0 ! ) A) # ) $1 1 # Ecuaþia de miçcare ín regim staþionar 7 A ! < PM = P2 + p m +v + p Fe A A A 1 # A M = M2 + M0 Avantajele motorului sincron faþá de cel asincron " L0 " cos " ! L 1 = ! 0 0A ) " A 0 # %1 A % ! L Dezavantajele motorului sincron faþá de cel asincron " 0L # L 0) " L 0 0L 1 L) 1.10.3. Pornirea motorului sincron -! L 0 # L ! !0 A. Pornirea cu motor auxiliar / 0 % 0 L 01 L # B. Pornirea cu frecvenþá reglabilá -! ! L0 # 0 !L !A 0 .5"* G A B 10 0 n1 = (5 6) rot / min 6+ < 62 L0 ! L0 0 0 L 0 0, # 62 0 ( 01 0 B L L 0 ! 1 ! % A 0 ! 0 !L 0 0 L !L 0 L L !A 0 C. Pornirea ín asincron 4 0 0 0 10 01 colivie de pornire 04 B 10 A 0 B # 1 !B 0 1 ! A A ! B # 0 # M as 1 /B =# A 0 n = 0,9 0,95 n1 1 0 L M as = M rez 01 0 %A - M #0 L L ! Ms! 0 A $ 0 0 ! M %A A1 A0 @ 1 M L 0 0 , L 1 1 L %L4 %0 L # 0 0 # 0% '1 0 0A < a) Se scurtcircuiteazá ínfáçurarea de excitaþie 0 110 %A ! 0 %A 0! B # ! 0 0 B # 1 !B 0 !0 4 1 A0 A< 63 n2 = /B /B 10 - 60 f 2 60sf 1 nn = = n1 1 = n1 n1 p p A0 A nd = n + n2 = n1 !0 B # ! A0 A ni = n n 2 = 2n n1 = 2n1 (1 s ) n1 A B A 0 .: + A ! 0 0 n < 63 68 / Md < = n1 (1 2 s ) ! 0 69 ># 3 / %A 01 (0 01 ) "1 0 Ms 0 B0 4 7 % =# A 1 A 0 0 A 7 % < "1 0 0 0 A 0 01 0 0 A ! A A n = 0,5n1 0 A 1 0! A 0 = #0 1 4 ( 0 % b) Se lasá deschisá ínfáçurarea de excitaþie 68 0 01 1 0 %0 A& 0 0! 0 c) Se conecteazá ínfáçurarea de excitaþie pe o rezistenþá 01 0 %A 0! Rs = (8 10) Rex ! 10 %A ! Mi # 3 Md 0 $ ! 01 0 A 1 4 ! 1 4 A 0 1 0 10 0 # A0 A ! 1.10.4. Caracteristicile de funcþionare ale motorului sincron 4 < 1U = ct. . +: P, I , M , n, 6 , cos " = f ( P2 ) 0 f = ct. . I = ct. /E 1# 3* > # 3* / n, M , 6, I = f ( P2 ) > # 36 / ! L cos " = f ( P2 ) % A 69 N M 0 caracteristica ! # M = f ( P2 ) L n = f ( P2 ) M = M0 + M2 0 6 = f ( P2 ) L 0 n = n1 , 0 M2 = 0 P2 % 1M M0 / # 0 / / 00 cos " = f ( P2 ) ! ! I E = ct. " 1# 36 $ !0 0 1 L % L cos " ! 0 0 0( 0 I E1 1 M 1# 0 % % 0 1 0 L cos " = 1 0 0 cos " ! ! A1 %L !0 A / 5 %0 I E2 > I E1 0 0 1 0 L cos " = 1 , 0 100 ! cos " 00 ! 1# !0 01 L ! %0 ( #0% L 0 %0 ! I E3 > I E2 * 0 0 L !1! #0 L0 # !0 1 L / 6 0 0 I E4 > I E1 - 1 # !L P2 !0 N ! 0 1M L L ! 0 L !0 1.10.5. Compensatorul sincron N # 1 !0 1 0 0A 0 @# % A 01 # # 0 0 !0 +: 0 1 A 0 0A 1 !0 A ! ! !0 / Ia 01 !0 0 1 / A I 0 ( I / r / A 1 $ 0 1 0B !0 !0 0 A 0 0 0 0A 0 0 !0 !0 I r/ 0 0 !0 0 # 3+ ! Ir I r// > # 3+ $ 0 / 0! #= Observaþie. / A 1 0 0 0A !0 ! B = 1 0 0A ! # !0 " A " # B 2. MA§INA DE CURENT CONTINUU ! 0 B % = 0 # 01 A 1 # 0 B + 0 10 " 0 " 0 " 01 10 " 0 0 % % A 0 A A ) % ) % A A !A 0 % A 0 !A ! B B B 0 0 10 0) 10 10 % % % (0 < A A A 0 % A %0 B 0 ! % = 2.1.1. Párþile componenete ale statorului $ %0 0 inductoare B # 0 Carcasa 0 0 %0 0 %0 , = ! =# # 1 # A , % 0 0 ! 0 "5 + 0 0 A # 0 Polii principali A 0 A 4 0 B A # 01 0 10 N! A 0 ! A :+ % # 0 A0 % 0 A A 1 A # # % A % # A # 0 0 > 1 0 1 =# 0 1# ! A 1 # B A 1 0 1 0 " ! 5+ % 1 0 +5 0 Polii auxiliari A# 1 1# 1 A A % !0 0 A A1 % 0 0A A Infáçurárile de excitaþie 0 # 1 01 " , ! # 1 A B ! 0 % A 0 1B 0 7 A0 % 0 B 0 # A 0 înfáçurarea de compensaþie, 1 #= 0 ! 01 2.1.2. Párþile componenete ale rotorului @ Miezul feromagnetic A 0 C A 0 0 0 0 # :+ 0 % 1! 1 # ( ! ! # 0 # 0 l 3 20 cm B 0 0 0 !0 ! A% # # 0 0 0 A !0 ! A Infáçurarea indusului 0 1 0 0 # 0 10 0 0 # 1 C 10 0 0 0 0 0 0 0 0 1 0 10 0 4 10 0 1 0 ínfáçurári de curent continuu. $ A 01 A 0 +* B1 1 Colectorul 0 B 10 0 @ % A A0 1# 10 1 B# 0 #0 A 2.3.1.Tensiunea electromotoare indusá @A l S0 U e = i N bU es med 0 K Nb = 2a ! 0S " 0 U es med = 2 wsU ec med i 55 ! #5 8 5 55 5 5* 0 A # 0 S 0) S # A U ec med = B med Li v a 0 0 ! va = Dn 60 S0 0) O– 0 0 ) 5– 0 ws " 0 U ec med "! ( B med ! Li " # v a –! , 0 ) " # SS ) 0< 5 56 A ) # A< 5 5+ (" " (0 ) S S! K A ) +6 0 = 0 ! va = D 2p 2p n 60 5 52 5 53 S 0 5 58 5 59 ) 5 *: - A Ue = Ken Ke = pN 60a i 0 % 0 L = Li B med # 2.3.2. Cuplul electromagnetic al maçinii de current continuu , L 1 0 # L M 10 < PM = U e I a = M 5* 0 !B S ! A 5 58 5 59 < pN nI a U e I a 60a pN M= = = Ia = Km Ia 5 *5 2n 2a 60 Km = pN 2a 5 ** L Ia 0 / # 0 L # 0 L % L B ! ! In concluzie A 0 # # # ++ 2.4. GENERATOARE DE CURENT CONTINUU ; 0 L 0 generator M 0 0 0 2.4.1. Bilanþul de puteri çi ecuaþiile generatorului de curent continuu separata $ 0 % # %A 0 ABS 0 A # 5 52 0 A A < puterea mecanicá 0 " P1 = M 1 ) 0 ) " P2 = UI puterea electricá " PM = M = U e I a puterea electromagneticá, ! " 0S ) ! L) " p m+v " p Fe 1 1 L =# L0 1 0 0 ) " p ex = U ex I e 1 10 > # 5 52 7 A % ) # 2 " pCua = Ra I a 1 10 ) " Ra AS0 0 ) " p ct = U pe I a 10 Ecuaþia de miçcare ( A P1 = PM + p m+ v + p Fe &0 p0 = p Fe + p m+ v A S# S P1 PM p0 = 0 L 5 *6 0 S0 # 5 *+ # +2 0 S S # 0A A "< A "! # ! 0 A T A M1 " M1 M M0 = 0 ) "M # 5 *2 ) "M0 Ecuaþia de tensiuni la generatorul de curent contiuu " # 5 52 ! 0 P2 = PM pCua p ct % !< 2 UI = U e I a Ra I a U pe I a ( 0 A A 0 # < # % A S 0 I = Ia 0A A A< 5 *8 5 *9 U = Ue 0 0 Ra I a U pe " 5 6: S Ra I a 56 U = U e Ra I a 2.4.2. Curbele caracteristice ale generatorului cu excitaþie separatá N # 5 53 % L 0 0 1 # Fig.2.27. Schema pentru ridicarea experimentalá a caracteristicilor generatorului de curent continuu cu excitaþie separatá. +3 Caracteristica de funcþionare ín gol 1I = 0 U 0 = f (I e ) 0 5 6* /n = ct. , A S# 0 U 0 = U e0 U e0 0 ! e = U mm = 2 N e I e U 0 = f (I e ) 0 0 0 # 0 (0 0 0 = f (U mm ) # U0 ! 0 Ie = 0 / M %L %L M Rc , L 0 # # 5 58 , 0 0 %L > # 5 58 / # 0 A S# 0 0 N 0 ! 0 #0 0 !0 %L 0 0 0 0 % 0 U rem % rem ( 0 # M0 +" 5 U N -L L 0 0 # # 0 , 0= 0 0 Caractersitica de sarciná 0 A0 1 I = ct. U = f (I e ) 0 /n = ct. ! $ ! Rc < 5 6+ # 5 53 1 0 % L 0% L 0 0 0 Rs . +8 0 / .: > # # 0 0 5* # ) !M / L 0 5 0 0 01 # . 0 0 0 0 !M 01 0 # 40 >#5* / Caractersitica externá $ A< 0 > # 5 *5 / % 0 $ 0 " A "0 / UN ,IN %L (0 5 *5 JL S 01 !0 0 1 I = ct. U = f (I ) 0 e /n = ct. # 5 *5 < 5 62 # 0) % L A L Ra ! 0 ! L 0 M0 0 0 1# # 01 ! - # U0 L< 5 63 U= N U = (5 10)% U0 U N 100% UN +9 > # 5 ** / N # !M / 0 # % 0 5 ** % 0 > # 5 *6 / # # #= 0 # ! !M 4 0 I e = ct #) 0 # % Caracteristica de reglare $ A< 1U = ct. I e = f (I ) 0 /n = ct. # 5 *6 0 5 *6 # 0 0 ! 1 M !M /0 #= U =UN $ !0 0 L 1M0 0 0 5 68 # L F. N 0 (# 0 #0" S # 0 0 0 # 2.4.3. Curbele caracteristice ale generatorului cu excitaþie derivaþie U %L !L 5 *+ N 0 %L 00 0 0 10 1 I e = (2 5)% 0 2: 0 # 01 0 0 % L > # 5 *+ $ # Procesul de autoexcitaþie L # 1 10 ue ! 0 10 10 , !0 01 10 ue 10 %L ( L 5 69 !M # % % L 0 !L 1 0 O 1 0 0 1 % 00 %L !0 01 0 1M 1 0 % % i a = ie di u e = ( R + Rc + Re )i e + ( La + Le ) e dt N # 5 *2 0 U e = f (I e ) 5 0 %L 0 ( R + Rc + Re ) I e = f ( I e ). %L 0 M 01 di e 5 =0 dt $ !0 0 0 Ue 0 # L tg = R + Rc + Re M Rc > L L 5 +: # L 0 0M 2 L 1M 0 cr 5 L # 0 1 L L5D %0 L L0 0 Rccr # L ! 0) Rc > Rccr 5VV 0 %L ( 0 00 %L 0 S 0 A< > # 5 *2 % !0 "0% M # %L S 0) 5" % S0 %A0S ) *" A 0 %A0 0 B ! 0 Rc < Rccr (0 ! A S ! 0 A B # % A < Rc B 0 $ ! A S A Rc < Rccr ( 0 S A S 00 A S 0 0# 0 A " S 0 S0 %A ! % 0 !0 (0 A 0 S 0 0S 0B # / B 01 0 %L 0 0 B! Observaþii: C U0 1# #0 Ue 0 L10 0 L ! Ia = Ie #= ) 25 0 L # L 0 L L 5 69 U = U e Ra I a ; U = ( Rc + Re ) I e Ia = I + Ie Caracteristica de funcþionare in gol L 00 5+ C 0 0 M 4 N !L % # Rc 01 L L #= -0 # M !L ( # L O # 1 1I = 0 > # 5 *3 / U 0 = f (I e ) 0 5 +5 /n = ct. A S# N M U 0 = U e0 1# 00 %A 0 0 S % #M L Rc 1 (0, ) Caracteristica externá # 0 1 R = ct. U = f (I ) 0 c /n = ct. ( 0 ! # # 05 $ !L < %L % 0 Rc 0 UN 5 +* IN % !0 0 M #0 0 N # # 5 *8 % L0 S 0 < 1 !L 0 2* " % ( # critic 0 M 0 1 I sc ) L L % Ie = 0 L % 0 I cr U Re + Rc 0 Rs curent ! 0 M0 ! 0M 0 Rs 0 0 0 % L ! 00 #0 L # I sc = U e / Ra = (10 ÷ 20) I N % 0 Ue Caracteristica de sarciná > # 5 *8 / % # % 0 0 L 0M " !L % 1 I = ct. U = f (I e ) 0 /n = ct. çi cracteristica de reglare U = ct. I e = f (I ) n = ct. 0# !L Caracteristica de scurtcircuit !L 1 M 0% % 5 +6 5 ++ % L 0 0 0 0 10 # % L 2.4.5. Caracteristicile generatorului cu excitaþie mixtá $ # % %0 01 5 65 U 0 01 0 0 %L !L % (0 % 10 0 % % # % 26 0 # 10 excitaþie mixtá adiþionalá !L 10 % 10 0 0 0! diferenþialá ( L 0 #0 > # 5 65 $ # 01 1# # M 0 !L N # # !L 5 6* % (0 IN 0 0 1# 10 0 L 0 1M 0 0# (0 IN % % M L 0 %0 # !L N # 0 % M 10 , caracteristica externá 0 # 10 % ! " L " 0 0 0 0 0 5$ normal compundat 10 0 0 0 , 0 6# 0 supracompundat L0 10 % # anticompundat > # 5 6* / % 1 0 # ! * A S # 2+ % 0 0 L # 0 0 2.5. MOTOARE DE CURENT CONTINUU ; 0 L 0 0 0 M 0, 0 # 2.5.1. Bilanþul de puteri çi ecuaþiile motorului de curent continuu $ 0 % %A 0# 5 6+ 0 A < puterea electricá 0 A) " P1 = UI " P2 = M 2 puterea mecanicá 0 ) " PM = M = U e I a puterea electromagneticá, ! " 0S ) " p m+v ! L) " p Fe 1 1 L =# L0 1 0 0 ) " p ex = U ex I e 1 10 % A) 2 1 1 " pCua = Ra I a ) " Ra A 0S0 0 " p ct = U pe I a " Ecuaþia de miçcare ( A PM = P2 + &0 p0 = p Fe + p m+ v A S# PM P2 0 ) > # 5 6+ 7 A L p m + v + p Fe 0 S p0 = 0 S0 # 5 +8 5 +9 22 0 A "M2 "M "M0 S 0A ! A M # ) A M M2 M2 ) A T M0 = 0 A S # "< 5 2: # ! M0 = J < 52 A< 5 25 5 2* S 0A 5 26 5 2+ d dt Ecuaþia de tensiuni la motorul de curent contiuu # 5 6+ ! 0 P1 = PM + pCua + pct UI = U e I a + ( % A 2 Ra I a + U pe I a 0 I = Ia U = U e + Ra I a + U pe U = U e + Ra I a 2.5.2. Caracteristicile motorului derivaþie > # 5 62 $ 0 I e = (2 ÷ 5)% I N A % A A % !A 00 < 0 0 S # A U = U e + Ra I a ; U = ( Rc + Re ) I e I = Ia + Ie 5 23 23 Caracteristicile de funcþionare ale motorului derivaþie 1) Caracteristica vitezei $ A< 1U = U N . n = f ( P2 ) 0 Rs = 0 .= N / U = K e n + Ra I a 4 0 A 0 0 A< U Ra I a Ra I a U n= = = n0 ns Ke Ke Ke n0 " A S# 0) U n0 = Ke ns " 0 A A S 0) RI ns = a a 5 35 Ke 4 B A 5 3: S B #= 0 = ct. A ! 0 n = f (I a ) 0 A 0 # !0 0 0 (0 # =0 A > # 5 63 / % ! A # !0 , 0 n s = (5 ÷ 8)% Observaþie $ 0 B A ! !A 5 28 5 29 5 3: 53 ! n = f ( P2 ) 0S # 5 63 0 A P2 ' I a 0 0 0 0 A 0 # 0 0 % 28 0 L 1 M P2 0 L 54 0 ! 1# 5 Caracteristica cuplului 1U = U N . M = f ( P2 ) 0 Rs = 0 5 3* .= N / $ !M 1 ! A S # A M = M0 +M2 A< M2 " 0) P 5 36 M2 = 2 M0 " M0 = p0 = p Fe > # 5 68 / ) 5 3+ S0 + p m+v S0 0 5 ( A S B ! = ct. 0 B # 5 68 , A A 0 ! ! 0 * Caracteristica curentului $ M = Km Ia A 0@ " 1U = U N . I = f ( P2 ) 0 Rs = 0 5 32 .= N / !M 1 ! A # A I = Ia + Ie $ !0 0 I a = f ( P2 ) 0 0 I e = f ( P2 ) # 0 0S # 5 69 " 0 = ct. 5" 0 29 > # 5 69 / > # 5 +: / 6 Caracteristica randamentului - $p " 1U = U N . 6 = f ( P2 ) 0 Rs = 0 .= N / ! A < P $p 6 = 2 =1 P1 P1 0 0 # 5 +: 5 33 5 38 6 = (75 ÷ 94)% Caracteristicile mecanice ale motorului derivaþie ; L0 0 01 L caracteristica mecanicá 0 < 1U = ct. . n = f ( M ) 0 Rs = ct. . = ct. / A n= U Ke 0 Ra M KeKm 2 0 5 39 Ia = M Km A 1 = n0 ns 5 8: 3: 0 n0 ns " A "0 S# A ns = Ra M Ke Km B 0 A 2 0 S 53 ) 0) 58 #= 0 = ct. 0 # !0 A !0 A 0 0 n = f (M ) 0 0 1) Caracteristica mecanicá naturalá 1U = U N . n = f ( M ) 0Rs = 0 5 85 .= N / , !A 0 >#5+ / A 0 0 0 0 n s = (5 ÷ 8)% B 0 0 #0 # 5+ " 0 01 B 0 ! !A B 1) Caracteristicile mecanice artificiale de tensiune 1U = ct. ! U N . n = f ( M ) 0 Rs = 0 .= N / A A< Ra M U/ / n= = n0 ns 2 Ke KeKm !0 0 0 ' ct. 5 8* 5 86 0 5 8+ ns . 0 / n0 = A U/ Ke ! S# / 0 / ! 0 U >UN 0 $ < 0 0 0 < 3 " A " A 0 / # U <UN B ) S 0 0 > # 5 +5 / # 5 +5 2) Caracteristicile mecanice artificiale reostatice 1U = U N . n = f ( M ) 0 Rs = ct. ! 0 .= N / AS ( Ra + R s ) M U n= = n0 n s/ 2 Ke Ke Km A S# 0 n0 " 0 ( R + Rs ) M / ns = a 5 88 KeKm 2 4 ! ! A 0 0 5 82 A < 5 83 A " Rs 0 0 > # 5 +* / # 5 +* 2) Caracteristicile mecanice artificiale de flux 35 0 1U = U N . n = f ( M ) 0Rs = 0 . = ct. ! N / % A 0 A< ( Ra + R s ) M U / n= = n0 n s/ / /2 Ke KeKm !0 0 " A S# 0 U / n0 = 5 88 Ke / 0 A Ra M / ns = 5 88 Ke Km / 2 / ! ! A 0 A / % < Ni 0 # 5 ++ 2.5.3. Caracteristicile motorului serie 0 %A 00 0 0S S0 0A A S# 0 0 %0 5 82 5 83 Ie = Ia ( 0 > # 5 +2 $ % 0 3* A S # A U = U e + Ra I a ; I = Ia = Ie 0< 5 9: !B A S! A A< 5 95 5 58 A n= U Ra I a Ke = U Ke 5 2+ !A Ra I a Ke Caracteristicile mecanice ale motorului serie L0 mecanice < 1U = ct. . n = f ( M ) 0 Rs = ct. . = ct. / , 0 0 caracteristicile 5 92 2 M = K m KI a Ia = n= U M KmK Ra U = K e K K1 M 0 A 5 95 0 5 93 M KeK KmK 0 Ra K2 7 ct - ! A 5 98 M = Km s Ia Ia = M Km s - S n= n = f (M ) U Ke s Ra M KeKm 2 s 0 0 A 0 5 98 0 5 93 1) Caracteristica mecanicá naturalá # 5 +9 " 0 " A 0 0 0 elasticá (moale 0 0; 0 36 0 L 1U = U N . n = f ( M ) 0Rs = 0 .= N / , L # ! " #0 0 1 L #) ! 0 L ! 0 0 L 1# 5 99 ! 1 0 > # 5 +9 / 0 0 0 5) Caracteristicile mecanice artificiale de tensiune 1U = ct. ! U N . n = f ( M ) 0 Rs = 0 .= N / A A / Ra U " A n= K1 M K 2 " A n= U/ Ke s 5 :: < 5: 5 :5 Ra M Kekm 2 s !A B 0 % ! # 5 2: 0 U <UN 0 1 > # 5 2: / 2) Caracteristicile mecanice artificiale reostatice 3+ " " A A 1U = U N . n = f ( M ) 0 Rs = ct. ! 0 .= N / AS Ra + Rs U n= K2 K1 M 5 :* A < 5 :6 n= #52 U s Ke / ( Ra + Rs ) M Kekm 2 s 5 :+ 0 1 A 0 A Rs A >#52 / 3) Caracteristicile mecanice artificiale de flux 1U = U N . 5 :2 n = f ( M ) 0Rs = 0 . = ct. ! N / ( % 0 0 # 10 0 %A # A1 0 ! 0 A0 W <N % # 5 25 2.5.4. Caracteristicile motorului mixt %A 5 2* > % 1 > # 5 25 / % A 01 A %0 S 0 # 32 0 10 % 0 !A 0 = 10 % 0 A % 01 0 A 0 A 0 B 01 0 % 0 0 = A B A > # 5 2* $ % 0 Caracteristicile mecanice ale motorului mixt 0 !A " !A ) " ) " % #0 10 " % !A " $ !B + 00 ! % 0 # L 1 0 5 * A 0 0 ) 6 0 A % A A 01 0 0 0 L % L 0 ! !A 0 0 > # 5 26 / % 0 1#) 10 1 < # 5 26 " % 33 2.6. PORNIREA MOTORULUI DE CURENT CONTINUU 0 0 N # ) #! ! A 0 0 # 0 ! L 1 ! L ! 0 1 0 0 2.6.1. Pornirea prin cuplare directá la reþea 4 0 0 0 0 M0 2IX A d 1 .u a = Ra i a + dt ( La i a ) + u e . .u e = K e n . d .u ex = RE ie + ( Le ie ); 5 :3 dt 0 . d .m m r = J dt . .m = K m i a . / = f (ie ) $ 1! motorul derivaþie 0 N u a = u ex = U . ! 0L L a , Le 10 0 10 0 %L 0 ! 0 L $ !0 0 M #0 regimul tranzitoriu mecanic !L L regim tranzitoriu electromagnetic !L L % " regim tranzitoriu unic electromecanic. /M m < mr , n = 0 L di U = R a i a + La a 5 :8 dt $L L 0!L % L0 L Ta = a 0 ! 0 I p max = U / Ra 4 Ra 38 0 ! L 01 L ) ue ! 0 / 0 0 0 ! Ip 1 ! L 0 0 m > mr L M 1 n!0 M L Y If = Mr KM # 5 2+ m = mr CL nf 1 0 U Ra I f nf = /M Ke 1 0 M ( 1 1M M ! , motorul serie % 0 ! # 5 2+ > # 5 2+ / L 1 0 L M Ip 0 I p max / # % % # % ! 01 I p = (10 15) I N ia M ! 10 L % L 0 Ip !L L 0 0 L 1" t p . : ": * Ip 0 .: :5 N M Mr =0 1 # 0 Ip M # 39 Mp 0 1 L 4 ! #= 2.6.2. Pornirea reostaticá , 1 0 M0 N0 %L 0 L L0 ! %0 $ .: #= 0 10 0 0 0 0 L 0 Rp 01 L L Rc # 5 23 N # ! % 00 .: 5 56 I p max = Rp ( ! U Rp 0 L 1 0 0 ) U 0 0 0 Ken ; Rp Rp I p max 0 1B = (1,5 1,7) I N I p min = (1,1 1,2) I N Ia = ! ! 0 0 If L 5 5+ # 5 28 0 > # 5 23 $ 0 !L 8: 0 ! @ 0N 0 L # 5 23 Ci 1 1M ! ! 0 L0 1 L /M 01 ! 0 A 0 L L 0 I p max $ I p max , I p min ) / R p1 C1 A ! 0 I p max N R p1 ! R1 ia ! L 1 I p min 0< M0 1M 1 0 L 01 ! < 5 53 0 7 ! L M !0 0 ! Ri Ri 4 # A U = Ke I p max , I p min " 0 0< 5 2+ 0 + R p I p max 0 5 52 0 A Rp Rp = " Rp U I p max R p1 A !/ U = K e n1 ( + R p I p min 4 B U = K e n1 + R p1 I p max A 0 A I p max R p1 = Rp I p min = 0 R p = R1 + R2 + R3 + ... + Rn R p = R2 + R3 + ... + Rn 0 0 R1 = R p R p1 0 5 58 5 59 A < 5 *: A0< 5* 0 8 > # 5 29 / !A Observaþie 0 01 #53 " "A " / " n = f (I a ) 0 A 00 1 ! !A A 0 0 0 0) 0 ! =< ) ! ! = # 0 < 2.6.3. Pornirea cu tensiune redusá , ! / A ! B0 ! N0 Rc ! 0 =# A % 0 ! # ! 0 L L % 0 L0 0 0 L # 5 35 N # ! ! 0$ 0 0 0 0 01 1 L % 85 0 Ia = U/ Ken ; Ra 5 *8 > # 5 35 $ $ I p min = (1,1 1,2) I N 0 0 !L 1 B I p max = (1,5 1,7) I N 0 U1 A A ! 0 1B 0 A 1 ! ! 0 0 0 0 ! ! 1 A 0 0 I p max $ ia $ 0 0 U 1 /M 0 0 L 0 I p max N 1B I p max , I p min ) / Ui " " I p max , I p min # 0 A 5 2+ U1 = K e 0 + Ra I p max 0! 01 A 0 0 U1 !/ U2 U 1 = K e n1 + Ra I p min 0< 01 ) 7 4 5 *9 ( U 2 = K e n1 + Ra I p max A 0 A U 2 = U 1 + ( I p max I p min ) Ra 5 6: 56 8* - B 1 # 0 > # 5 3* / Observaþie. 0 01 " " " ( " n = f (I a ) 0 !A !A !A 1 ! 0 00 0 0 00 = # ! = < 0 0) ! =< ) # 0 2.7. REGLAJUL VITEZEI MOTOARELOR DE CURENT CONTINUU # L Ra I a # L 5 *: Ua ) n= 0 4 M r = ct. Ua Ke )* % < A 0L 0 #= ! " 5 M < 86 0 5 * 6 U ( / 4 # ! #= #= 8 = n max / n min 2.7.1. Reglajul vitezei prin variaþia tensiunii # 0 U <UN A 0 0 #= ! ! A !A ) M r = ct. / # 5 36 !A 1 # 5 36 A 0 Indici tehnico- economici 0 0 < U # ! 8 = nmax / nmin = 8 ÷ 10 0A 5( #= < 0 */ #= < 1 64 " # " # 0 0 # < A 0) ! = 01 B > # 5 36 / < 1 # 0 A ! ! = 0 8+ # 2.7.2. Reglajul vitezei prin metoda restaticá 1 " Rs > 0 A @ A 0 # #0 ! 0 A0 0 $ 0 0 1 # ! " # #= A0 0 # > # 5 3+ / #= ! !A ) # !A 0< / 5 3+ 1 1 A 0 Indici tehnico- economici U # ! # 5( #= < 0 */ #= < 0 !A 0 64 < " !A ) M r = ct. # 5 3+ < 1 # 8 = nmax / nmin = 2 ÷ 3 0 0 1 ! = 0 A 82 0 " # # ! = 01 B 0 % 2.7.3. Reglajul vitezei prin variaþia fluxului de excitaþie A 0 %$! 1 otorul derivaþie % %A !L Ie = B Rc < U = f (I e ) Ie = 5 *9 Re + Rc , !A ! %" 0 0 # 0 <N L / % n= 0 0 U Ke L L / Ra M / = n0 /2 Ke Km 1# / ns ; 1 n s/ 0 0 # 5 32 5 6: > # 5 32 / #= ! !A ) ! ! 10 0 % < C M = M r = ct , % L 83 M = Km Ia ) 5 32 " 0 L La motorul serie A % 0 M B 0 0 0! 0@ #0 # ; M M r = ct 0N # 00 # 56 = e Rm we Ie 4 " 0 # " " " " B % A A 0 A< 2we I e = e= Rm Rm %A # 0 0 10 0 %A 0 A 0 0 ) % 0 10 % A) ) 0 % A < 0 ) " %A 0B 0 %A 0 # 5 33 A 0 O 10 0 0 # > # 5 33 $ % = A 5 65 B B< Rd Ie = Ia Rd + Re ! A0 L L) A0 B Indici de relare U # 0 " 1 0 0L 1 01 " 0 0 L ! 0 0 : 8 = nmax / nmin = 2 ÷ 3 % 0 0 < # 0 0 0 0 ) A 0 88 0 5( */ !A 64 " 1 " # A #= #= Rc < ! # A % ! A = ! Rd ! ) 0 = 0 " 1 ) 2.8. FRÃNAREA MOTOARELOR DE CURENT CONTINUU $ 0 B < "B !0) "B ) "B 0 2.8.1. Frãnarea recuperativá ; 0 # B0 !0 B ! 1 A A ! A 0 Frãnarea recuperativá la motorul derivaþie $0 0 % ! 0 L # 5 38 0 /B 01 #A 1 A / 0 A A 0 /B " > # 5 38 / !0 M !A 1 0 0 ! Ma 0 # 0A 4 0 0 1 # 01 0A 0 B# 89 0 1 A B B 0 $ = 1# ! # 0 0 n0 A A 0 0 01 01 ! 0 0 A 0 7 ! # 5 38 L 0 Ma = M f (0 0 0 B A0 B Rf 1 4 0 0 M 0 M Cazul motorului serie ( 0 1 !0 7D ! = 1 A 1# 0 B 0 Frãnarea recuperativá la motorul mixt , % 0 0A 1 A = A % 01 0 0 < = d+ s 5 33 /B 1 # B0 !0 0 Ia < 0 0 % 10 / = ! A % s = f (I a ) < 0 0 0 B ( A ! B 01 0 B0 Bilanþul de puteri: 1 # 0 0 0 "B 01 0 0 0 0 0 0 1 A 0$ B ! = 00 # 0 ! = 0 0B 0 A n > n0 0 M M0 0 0 0 2.8.2. Frãnarea contacurent (electromagneticá) # B0 # 0 0 A< 1 # 9: 0 " ! " 1 0) 01 0 A A A #0 < B M L B 0 If = @ ! L # Frãnarea derivaþie 0 contracurent # 5 39 L U + Ken Ra + R f 01 # # M0 5 6* la 0 4 0 motorul 0 1 0 0 > # 5 39 / B 0 7 B / Rf1 L 0 # L M 0 B0 B B ! A ! 0 $ 0 0 0 Rf 2 !A !0 0 0 B A 0 B 0 1 M0 0 ! L 0 B A A B B (0 =# N 0 M > Mr 4 0 0 M f min 0 % 0 M f max ! 01 L 0 -L 0 0 M 9 % Frãnarea contracurent la motorul serie , 0 10 / s = f (I a ) 0 ! A 1 1 # B0 1 % B A ! !A 1 A A 0 # ! 0 B ! 0 0 1 ! 10 $ 0 Frãnarea contracurent la motorul mixt , % A 1 # B0 0 = 0%A ! B % 01 0 # Bilanþul de puteri: A 0 0 "B 0N L M0 # 0 0 ! # N # 0 0 01 0 0( 0 A B 10 # ! I f = (20 ÷ 30) I N ) B A 10 1 0 01 1M 1 % ( #= 0 0 0 L / L0 Rf 0 2.8.3. Frânarea dinamicá -! 10 0 A0 B 01 / 0 L If = 0 10 % 0 Ken Ra + R f A ! L 0B 5 69 95 0 1 # # %A 0 !B 01 A !01 L0 # M Frãnarea dinamicá la motorul derivaþie / # M < Ke Km 2 M = Km I f = n 5 +: Ra + R f ! 0 A. 0 A 0 # !0 # # 5 85 B 1 0 A 4 0 0 0 A0 1 7 B R f1 $ !0 0 0 B 0 0 A 0 0 B 0 B 0 B =# ! 0 M f min ! A B A 0 Rf 2 0 ! %0 M f max B 0 > # 5 85 / !0 L Rf B L # 0 !A M M 1 M0 L >M L Frãnarea dinamicá la motorul serie , M 1 # # % 1 A < " 0 10 %A ! 0 U erem L0 A " # # ) 9* " / L B B 0 ! 1 0 R f < R f cr " 1 0 Frãnarea dinamicá la motorul mixt , % A 1 # B0 0 = 0%A ! B % 01 0 # Bilanþul de puteri< 1 B B0 0 0 0 0 01 0 0 A B $ B ! =0 0 ! A B 0 ! B 0 0 / 0 A 0 0 ...
View Full Document

This note was uploaded on 07/19/2010 for the course COMMUNICAT 10 taught by Professor Jeremy during the Spring '10 term at Aberystwyth University.

Ask a homework question - tutors are online