KeyPoints_Slides

KeyPoints_Slides - Control & Dynamical Systems...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Control & Dynamical Systems C A L T E C H Key Points, Vector Calculus Math1C - Spring 2010 Jerry Marsden and Eric Rains Control and Dynamical Systems and Mathematics, Caltech For computing resources: www.cds.caltech.edu/ ~ marsden Contents 1 The Geometry of Euclidean Space 7 1.1 Vectors in 2- and 3-Dimensional Space . . . . 8 1.2 The Inner Product, Length, and Distance . . 12 1.3 Matrices, Determinants, and the Cross Product . . . . . . . . . . . . . . . . . . 14 1.4 Cylindrical and Spherical Coordinates . . . . 18 1.5 n-dimensional Euclidean Space . . . . . . . . . 20 2 Differentiation 24 2.1 Functions, Graphs, and Level Surfaces . . . . 25 2.2 Limits and Continuity . . . . . . . . . . . . . . 27 2.3 Differentiation . . . . . . . . . . . . . . . . . . 30 2.4 Introduction to Paths . . . . . . . . . . . . . . 34 2.5 Properties of the Derivative . . . . . . . . . . 36 2.6 Gradients and Directional Derivatives . . . . 38 3 Higher-Order Derivatives; Maxima and Minima 40 3.1 Iterated Partial Derivatives . . . . . . . . . . . 41 3.2 Taylors Theorem . . . . . . . . . . . . . . . . . 43 3.3 Extrema of Real Valued Functions . . . . . . 45 3.4 Constrained Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . 50 3.5 The Implicit Function Theorem . . . . . . . . 53 4 Vector Valued Functions 57 4.1 Acceleration and Newtons Second Law . . . 58 3 4.2 Arc Length . . . . . . . . . . . . . . . . . . . . 60 4.3 Vector Fields . . . . . . . . . . . . . . . . . . . 62 4.4 Divergence and Curl . . . . . . . . . . . . . . . 64 5 Double and Triple Integrals 68 5.1 Introduction . . . . . . . . . . . . . . . . . . . . 69 5.2 The Double Integral over a Rectangle . . . . 72 5.3 The Double Integral Over More General Re- gions . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4 Changing the Order of Integration . . . . . . 77 5.5 The Triple Integral . . . . . . . . . . . . . . . . 79 6 The Change of Variables Formula and Ap- plications 81 6.1 The Geometry of Maps from R 2 to R 2 . . . . 82 6.2 The Change of Variables Theorem . . . . . . 84 6.3 Applications of Double and Triple Integrals . 89 4 6.4 Improper Integrals . . . . . . . . . . . . . . . . 93 7 Integrals over Curves and Surfaces 96 7.1 The Path Integral . . . . . . . . . . . . . . . . 97 7.2 Line Integrals . . . . . . . . . . . . . . . . . . . 99 7.3 Parametrized Surfaces . . . . . . . . . . . . . . 102 7.4 Area of a Surface . . . . . . . . . . . . . . . . . 104 7.5 Integrals of Scalar Functions over Surfaces . 107 7.6 Surface Integrals of Vector Functions . . . . . 111 7.7 Applications: Differential Geometry, Physics, Forms of Life . . . . . . . . . . . . . . . . . . . 117 8 The Integral Theorems of Vector Analy- sis 119 8.1 Greens Theorem . . . . . . . . . . . . . . . . . 120 8.2 Stokes Theorem . . . . . . . . . . . . . . . . . 125 8.3 Conservative Fields . . . . . . . . . . . . . . . 128 5 8.4 Gauss Theorem . . . . . . . . . . . . . . . . . 130 8.5 Applications: Physics, Engineering & Differ-8....
View Full Document

This note was uploaded on 07/19/2010 for the course MA 8 taught by Professor Vuletic,m during the Fall '08 term at Caltech.

Page1 / 143

KeyPoints_Slides - Control & Dynamical Systems...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online