Unformatted text preview: y . i. Since z = x + iy , ± ( iz + 2) = 2y . Thus ± ( iz + 2) > 0, means 2 > y , so we are left with the part of the plane below the line y = 2. 3. Letting a = u + iv , and z = x + iy as usual, we have  z  22 ± ( az ) +  a  2 = x 2 + y 22 ± (( uiv )( x + iy )) + u 2 + v 2 = x 2 + y 22 ± ( ux + vy + i ( uyvx )) + u 2 + v 2 = x 2 + y 22( ux + vy ) + u 2 + v 2 = ( xu ) 2 + ( yv ) 2 . 1...
View
Full Document
 Spring '09
 Koskesh
 Math, Complex number, Imaginary number

Click to edit the document details