# notes06s - 1 [Solutionsv1.0 FakePlasticTrees QUESTIONS 1...

This preview shows pages 1–2. Sign up to view the full content.

CS61A Notes 05 – Fake Plastic Trees [Solutions v1.0] Fake Plastic Trees QUESTIONS 1. Write  (square-tree tree) , which returns the same tree structure, but with every element  squared.  Don’t use “ map ”! (define (square-tree tree) (make-tree (square (datum tree)) (square-forest (children tree)))) (define (square-forest forest) (if (null? forest) ‘() (cons (square-tree (car forest)) (square-forest (cdr forest))))) 2. Write  (max-of-tree tree)  that does the obvious thing. The tree has at least one element. (define (max-of-tree tree) (if (null? (children tree)) (datum tree) (max (datum tree) (max-of-forest (children tree))))) (define (max-of-forest forest) (if (null? (cdr forest)) (max-of-tree (car forest)) (max (max-of-tree (car forest)) (max-of-forest (cdr forest))))) 3. Write  (listify-tree tree)  that turns the tree into a list in any order.  (This one you can’t use  map even if you tried. .. Muwahahaha) (define (listify-tree tree) (cons (datum tree) (listify-forest (children tree)))) (define (listify-forest forest) (if (null? forest) ‘() (append (listify-tree (car forest)) (listify-forest (cdr forest))))) 4. A maximum heap is a tree whose children’s data are all less-than-or-equal-to the root’s datum.  Of  course, its children are all maximum heaps as well.  Write  (valid-max-heap? tree)  that checks  if this is true for a given tree. (define (valid-max-heap? tree)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 4

notes06s - 1 [Solutionsv1.0 FakePlasticTrees QUESTIONS 1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online