{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture 2

# Lecture 2 - Discrete Time System Input x[n x y[n = f...

This preview shows pages 1–4. Sign up to view the full content.

Discrete Time System y [ n ] = f { x [ n k ] = n-k ], y [ n-k ] } x [ n ] g214 y [ n ] x n n y Input x [ n ] Output y [ n ] IF x 1 n n y 1 Linear System Homogeneity Property x 1 [ n ] g214 y 1 [ n ] THEN a x 1 [ n ] g214 ____ Input x [ n ] Output y [ n ] ax 1 n n ay 1 Linear System x 1 n n y 1 x 2 n n y 2 IF x [ n ] g214 y [ n ] Additivity Property x [ n ] = x 1 + x 2 n n y [ n ] = y 1 + y 2 1 1 x 2 [ n ] g214 y 2 [ n ] THEN x 1 [n] +x 2 [n] g214 ________ Input x [ n ] Output y [ n ]

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Linear System IF Additivity + Homogeneity g214 Linearity x 1 [ n ] g214 y 1 [ n ] x 2 [ n ] g214 y 2 [ n ] THEN ax 1 [n] +bx 2 [n] g214 _____________ Input x [ n ] Output y [ n ] Linear System Checking Difference Equation For Linearity: Nonlinear if Diff Equ. contains either: A constant term y [n] = Products of inputs or output terms y [n] = x 1 n n y 1 Time-Invariant System IF x 1 [ n ] g214 y 1 [ n ] Shift-Invariance Property O n n x 2 [ n ] = x 1 [ n-3 ] y 2 [ n ] = y 1 [ n-3 ] x 2 [ n ] = x 1 [ n-k ] x 2 [ n ] g214 y 2 [ n ] Input x [ n ] Output y [ n ] THEN y 2 [ n ] = _________ x 2 [ n ] is x 1 [ n ] shifted by k y 2 [ n ] is y 1 [ n ] __________
Time-Invariant System Shift-Invariance Property So, shift-invariance (a time-invariant system) implies:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}