{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

EE 342 exp5 abc

# EE 342 exp5 abc - EE 342 EXPERIMENT 5 CASCADE COMPENSATION...

This preview shows pages 1–11. Sign up to view the full content.

EE 342: EXPERIMENT 5 CASCADE COMPENSATION DATE: 02/25/2010 Authors: Gurpal Bhoot, Mason Borda, Jong Park LAB PARTNERS: NONE

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Motomatic : EE 4617 (1) -->max(abs(w-y)) ans = 6.750D-14 (2) -->RLRoot(K,rl,root) ans = ! 54.889107 ! ! - 2. + 7.1336602i ! ! - 2. - 7.1336602i ! Calculating ω n -->omega.n = sqrt(ku) omega = n: 7.4087183 calculating ζ -->zeta = 2 / omega.n zeta = 0.2699522 -->ugbU ugbU = ! 1.567D-08 ! ! 1.541243 !
(3) -->cos(atan(imag(RL(3)) / real(RL(3)))) ans = 0.2624664 -->RL = RLGain(K,rl,478) RL = ! 478.72086 ! ! - 8.6131015 ! ! - 5.6934493 + 20.303423i ! ! - 5.6934493 - 20.303423i ! -->zetaN = cos(atan(imag(RL(3)) / real(RL(3)))) zetaN = 0.2700033 (5) -->KC = 330; -->TC = C * KC * G / (1 + C * KC * G * H); -->[t yC] = TimeResp(TC,tt,Nt,x,%F); -->[y_final,tau_r,tau_p,y_p,O_p,tau_s,omega_d] = StepRespMetrics(t,yC) omega_d = 15.707963 tau_s = 0.46224 O_p = 41.128936

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
y_p = 1.4112894 tau_p = 0.18784 tau_r = 0.1088 y_final = 1. -->[dummy ugbU] = p_margin(TC); -->ugbU ugbU = 3.577581 (10) -->KU = real(RL(1)) KU = 20. -->omega_n = sqrt(KU) omega_n = 4.472136 -->RL = RLRoot(K,rl,root)
RL = ! 20. ! ! - 1.5625 + 4.1902976i ! ! - 1.5625 - 4.1902976i ! -->zetaU = cos(atan(imag(RL(3))/real(RL(3)))) zetaU = 0.3493856 K 0 τ r τ p O p τ s Ζ ω n Uncompensated System 54.9 .258 s .440 s 41.2 % 1.43 s 0.27 7.41 rad/s Nearly Compensated System 478 .086 s .152 s 46.9 % .508 s 0.27 21.1 rad/s Compensated System 330 .109 s .188 s 41.1 % 0.462 s 18.2 rad/s

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
-->s = poly(0,'s'); -->T = K * omega.n^2 / (s^2 + 2 * zeta * omega.n * s + omega.n^2); !--error 4 undefined variable : K -->omega.n = 1; -->zeta = 0.27; -->K = 1; -->T = K * omega.n^2 / (s^2 + 2 * zeta * omega.n * s + omega.n^2); -->tt = 20; -->Nt = 20001; -->[t y] = TimeResp(T,tt,Nt,x,%T); !--error 4 undefined variable : x
-->x = ones(1,Nt); -->Nt = 20001; -->[t y] = TimeResp(T,tt,Nt,x,%T); !--error 4 undefined variable : TimeResp -->exec('C:\Documents and Settings\sturm112\Desktop\EE342\EE342.SCE');disp('exec done'); ans = 0. exec done -->[t y] = TimeResp(T,tt,Nt,x,%T); -->xgrid() -->max(abs(w-y)) !--error 4 undefined variable : w

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
-->[t w] = StepResponse(omega.n,zeta,K,tt,Nt,%T); -->max(abs(w-y)) ans = 6.750D-14 -->G = 1 / (s * (s + 4)) G = 1 ----- 2 4s + s -->G = 1 / (s * (s + 4)); -->H = 1; -->G * H ans = 1 -----
2 4s + s -->pCu = [1]; -->PcU = [1]; -->QcU = [0 4 1]; -->[z p K rl] = RootLocus(PcU, QcU, 1, 500, 2001, 'x'); -->root = -2 + %i * 2 * tan(acos(zeta)); -->RLRoot(K,rl,root) ans = ! 54.889107 ! ! - 2. + 7.1336602i ! ! - 2. - 7.1336602i ! -->ku = 54.889107; -->oemga.n = sqrt(ku) oemga =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
n: 7.4087183 -->omega.n = sqrt(ku) omega = n: 7.4087183 -->TU = KU * G / (1 + KU * G * H); !--error 4 undefined variable : KU -->KU = 54.889107; -->TU = KU * G / (1 + KU * G * H); -->[t yU] = TimeResp(TU,tt,Nt,x,%T); -->xgrid() -->xtitle("Step Response of Uncompensated System", "t (s)", "y(t)") -->tt = 3.2; -->[t yU] = TimeResp(TU,tt,Nt,x,%T);
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 38

EE 342 exp5 abc - EE 342 EXPERIMENT 5 CASCADE COMPENSATION...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online