EE 342 exp5

EE 342 exp5 - -->[t yC] =

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
EE 342: EXPERIMENT 5 CASCADE COMPENSATION DATE: 02/25/2010 Authors: Gurpal Bhoot, Mason Borda, Jong Park LAB PARTNERS: NONE
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Motomatic : EE 4617 (1) -->max(abs(w-y)) ans = 6.750D-14 (2) System Uncompensated. -->RLRoot(K,rl,root) ans = ! 54.889107 ! ! - 2. + 7.1336602i ! ! - 2. - 7.1336602i ! Calculating ω n -->omega.n = sqrt(ku) omega = n: 7.4087183 calculating ζ -->zeta = 2 / omega.n zeta = K 0 τ r τ p O p τ s ζ ω n Uncompensated System 54.9 .258 s .440 s 41.2 % 1.43 s 0.27 7.41 rad/s Nearly Compensated System 478 .086 s .152 s 46.9 % .508 s 0.27 21.1 rad/s Compensated System 330 .109 s .188 s 41.1 % 0.462 s 0.35 18.2 rad/s
Background image of page 2
0.2699522 -->ugbU ugbU = ! 1.567D-08 ! ! 1.541243 ! (3) System Nearly Compensated. -->RL = RLGain(K,rl,478) RL = ! 478.72086 ! ! - 8.6131015 ! ! - 5.6934493 + 20.303423i ! ! - 5.6934493 - 20.303423i ! -->zetaN = cos(atan(imag(RL(3)) / real(RL(3)))) zetaN = 0.2700033 -->KN = 478; (5) System Compensated. -->KC = 330; -->TC = C * KC * G / (1 + C * KC * G * H);
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: -->[t yC] = TimeResp(TC,tt,Nt,x,%F);-->[y_final,tau_r,tau_p,y_p,O_p,tau_s,omega_d] = StepRespMetrics(t,yC) omega_d = 15.707963 tau_s = 0.46224 O_p = 41.128936 y_p = 1.4112894 tau_p = 0.18784 tau_r = 0.1088 y_final = 1.-->[dummy ugbU] = p_margin(TC);-->ugbU ugbU = 3.577581 (10)-->KU = real(RL(1)) KU = 20.-->omega_n = sqrt(KU) omega_n = 4.472136-->RL = RLRoot(K,rl,root) RL = ! 20. ! ! - 1.5625 + 4.1902976i ! ! - 1.5625 - 4.1902976i !-->zetaU = cos(atan(imag(RL(3))/real(RL(3)))) zetaU = 0.3493856 (11)-->[y_final,tau_r,tau_p,y_p,O_p,tau_s,omega_d] = StepRespMetrics(t,TU) omega_d = 4.1223922 tau_s = 1.73984 O_p = 31.830001 y_p = 1.3099162 tau_p = 0.74976 tau_r = 0.45728 y_final = 0.9936404 K r p O p s n Theoretical, Uncompensated System .457 s .750 s 31.8% 1.74 s...
View Full Document

Page1 / 6

EE 342 exp5 - -->[t yC] =

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online