LN3-digitalLogic_ans

# LN3-digitalLogic_ans - 1 Simplify the following expressions...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. Simplify the following expressions using Boolean algebra identities. a. F ( x , y , z ) = x y + xy z + xyz i. ii. iii. iv. v. vi. = x y + xy ( z + z ) => Distributive law = x y + xy (1) => Inverse law = x y + xy => Identity law = ( x + x) y => Distributive law = (1) y => Inverse law =y => Identity law b. F ( x , y , z ) = ( x + y ) ( x + y ) i. = ( x + y )( x. y ) ii. iii. iv. v. vi. = ( x + y )( xy ) = ( x y )( xy) = ( x x)( y y ) = 0.0 =0 => DeMorgan’s law => Double complement => DeMorgan’s law => Associative Law => Inverse => Idempotent 2. The truth table for a Boolean expression is shown here. a. Write the expression in: * Sum-of-products form. F = x yz + x yz + xyz * Product-of-sums form. x yz + x yz + xy z + xyz + xyz ( x y z )( x yz )( xy z )( xyz )( xyz) X 0 0 0 0 1 1 1 1 Y 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 F 1 0 0 1 0 0 1 0 F = ( x + y + z )( x + y + z )( x + y + z )( x + y + z )( x + y + z ) b. Draw a circuit to implement the truth table. Page 1 of 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online