New SAT Math Workbook

C in right triangle acb the longest side is the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: mote interior angle. ∠ACD > ∠B and ∠ACD > ∠A Exercise 2 Work out each problem. Circle the letter that appears before your answer. 1. Which of the following statements is true regarding triangle ABC? 4. If AB ⊥ CD and ∠1 > ∠4, then (A) (B) (C) (D) (E) 2. AC > AB AB > BC AC > BC BC > AB BC > AB + AC 5. In triangle RST, RS = ST. If P is any point on RS, which of the following statements is always true? (A) PT < PR (B) PT > PR (C) PT = PR 1 (D) PT = 2 PR (E) PT ≤ PR If ∠A > ∠C and ∠ABD = 120°, then (A) (B) (C) (D) (E) ∠1 > ∠2 ∠4 > ∠3 ∠2 > ∠3 ∠2 < ∠3 ∠2 < ∠4 3. Which of the following sets of numbers could be the sides of a triangle? (A) 1, 2, 3 (B) 2, 2, 4 (C) 3, 3, 6 (D) 1, 1.5, 2 (E) 5, 6, 12 (A) (B) (C) (D) (E) AC < AB BC < AB ∠C > ∠ABC BC > AC ∠ABC > ∠A www.petersons.com 238 Chapter 14 RETEST Work out each problem. Circle the letter that appears before your answer. 1. If 2x > –5, then (A) (B) (C) (D) (E) 2. 5 x> 2 5 x>− 2 2 x>− 5 5 x< 2 5 x<− 2 5. If 2 (A) (B) (C) (D) (E) x > 6, then x>3 x<3 x > 12 x < 12 x > –12 6. If AB = AC and ∠1 > ∠B, then m, n > 0. If m = n and p < q, then (A) m – p < n – q (B) p – m > q –n (C) m – p > n – q (D) mp > nq (E) m + q < n + p If ∠3 > ∠2 and ∠1 = ∠2, then (A) (B) (C) (D) (E) 7. (A) (B) (C) (D) (E) AB > BD AB < BD DC = BD AD > BD AB < AC 8. ∠B > ∠C ∠1 > ∠C BD > AD AB > AD ∠ADC > ∠ADB 3. 4. If ∠1> ∠2 and ∠2 > ∠3, then Which of the following sets of numbers may be used as the sides of a triangle? (A) 7, 8, 9 (B) 3, 5, 8 (C) 8, 5, 2 (D) 3, 10, 6 (E) 4, 5, 10 In isosceles triangle RST, RS = ST. If A is the midpoint of RS and B is the midpoint of ST, then (A) SA > ST (B) BT > BS (C) BT = SA (D) SR > RT (E) RT > ST (A) (B) (C) (D) (E) AB > AD AC > AD AC < CD AD > AC AB > BC ww...
View Full Document

Ask a homework question - tutors are online