New SAT Math Workbook

Example 3 4 5 3 4 5 3 4 5 3 4 5 subtraction

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: operations, as the order in which we add or multiply does not change an answer. Example: 4+7=7+4 5•3=3•5 Subtraction and division are not commutative, as changing the order does change the answer. Example: 5–3≠3–5 20 ÷ 5 ≠ 5 ÷ 20 Addition and multiplication are associative, as we may group in any manner and arrive at the same answer. Example: (3 + 4) + 5 = 3 + (4 + 5) (3 • 4) • 5 = 3 • (4 • 5) Subtraction and division are not associative, as regrouping changes an answer. Example: (5 – 4) – 3 ≠ 5 – (4 – 3) (100 ÷ 20) ÷ 5 ≠ 100 ÷ (20 ÷ 5) Multiplication is distributive over addition. If a sum is to be multiplied by a number, we may multiply each addend by the given number and add the results. This will give the same answer as if we had added first and then multiplied. Example: 3(5 + 2 + 4) is either 15 + 6 + 12 or 3(11). The identity for addition is 0 since any number plus 0, or 0 plus any number, is equal to the given number. The identity for multiplication is 1 since any number times 1, or 1 times any number, is equal to the given number. There are no identity elements for subtraction or division. Although 5 – 0 = 5, 0 – 5 ≠ 5. Although 8 ÷ 1 = 8, 1 ÷ 8 ≠ 8. When several operations are involved in a single problem, parentheses are usually included to make the order of operations clear. If there are no parentheses, multiplication and division are always performed prior to addition and subtraction. Example: Find 5 • 4 + 6 ÷ 2 – 16 ÷ 4 Solution: The + and – signs indicate where groupings should begin and end. If we were to insert parentheses to clarify operations, we would have (5 · 4) + (6 ÷ 2) – (16 ÷ 4), giving 20 + 3 – 4 = 19. www.petersons.com 10 Chapter 1 Exercise 8 1. Find 8 + 4 ÷ 2 + 6 · 3 - 1. (A) 35 (B) 47 (C) 43 (D) 27 (E) 88 2. 16 ÷ 4 + 2 · 3 + 2 - 8 ÷ 2. (A) 6 (B) 8 (C) 2 (D) 4 (E) 10 3. Match each illustration in the left-hand column with the law it illustrates from the right-hand column. a. 475 · 1 = 475 u. Identity for Addition b. 75 + 12 = 12 + 75 v. Associative Law of Addition...
View Full Document

This note was uploaded on 08/15/2010 for the course MATH a4d4 taught by Professor Colon during the Spring '10 term at Embry-Riddle FL/AZ.

Ask a homework question - tutors are online