exam1sol

# exam1sol - Marl'h HO T—EJL 219%“HORM l(5 points each...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Marl'h HO- T—EJL 219%“HORM l. (5 points each) Determine whether each of the following assertions is true or false. Give a brief explanation for each answer (full proof is not required). (a) If a linear transformation T: V —> W between ﬁnite—dimensional vector spaces is 1—to—1, thendim<gzuidifi3?. (T3110’ dimLV3=muT) ‘4'} l“ Ohmgw lzw‘e°\' Turn-L. Awa. rmKCT)‘-_J-lmu)) Shine Tact) €vJ. (b) If V and W are finite-dimensional vector spaces such that dim(V) S dim(W), and T: V ——> W is a linear transformation, then T is 1—to—1. Elm. A cka is Tm. am we»? T: tRn'MR“ #1? “*7 ">0. (0) The set of vectors (\$1, \$2, \$3, .724) which satisfy x1 = 3:4 and 232 = x3 is a subspace of R4. TM. TN Slv-«YVS'l’ "mum‘s M part (cl) is we M. (d) The set of vectors in part (c) is the nullspace of a linear transformation from R4 to some vector space over R. Tm. m m wuﬁyau a; \$11244”? (£th b3 “Bowman 2 (X.'X«+,‘K7:Y3). (14'; «.651 in check {ML T rs “(CW bwl yum will Widow it get Hi we“ w. M [701‘th) (e) The set of vectors in part (c) is the nullspace of a linear transformation from R4 to R (in other words, a linear functional). ma. 3m T a PM (d) is macho, 4 we kaT)=Z, we WM “'8 mllscu-L, £2ng ‘5 “M 9:) r4 veal-w; {of Lt), Lu; 091%wa Z, Edi “In mlbfau 4 M3 Jamar Saw-*le lMd ohmsm 22 by ﬁmgm M . (f) Q” is a subspace of the vector space R” over R. (Q denotes the ﬁeld of rational numbers.) Elsa. Nol acme «Mair smﬂax waUCwl-I‘un by ivmla‘wl mph/3 (g) Q” is a subsagce of R” considered as a vector space over Q (with the usual addition, and multiplication by rational scalars). Tml . Cuwiﬁ chunk WW «0%le amQ clamp WAD»! ;cc.lar W“ “Wilhelm S‘w- CW” ~- WM) 6 ((2K Ii a. M «M X; m V‘otl'imxcl . 2. Let S be the following subset of P(R): S = W) = x5 + x2, gm = x5 + 2, he) = x3, M) = as? — 2} (a) (30 points) Find a subset of S which is a basis of Span(S) and prove that your answer is correct. Tmm ML M \nSSWLa Wd' Msm: 4M7 9.4m)— my‘sh“? v4. 2‘ MR {we 2M QM 3.00;), 0:), ‘(m§_ Tu Fvw-e to S J M M Mr lanes B:%-C(m)’%(x)’\obt3§ :5 a was. Tm PM o guitar-Sm S?M(%):S\0M(S). 9mm BC—S, \$pm(¢\$)¢—Spm(£>, N42 J4, ere 9pm53999mU5), 93mm S‘3M(\3) is a Su‘JS act, H's euomgk 40 FM SESpchs). Twas we Duh, MQoQ k ska» M4 Jon :g m 89mm), cath ‘m M Lxcausa jLX) = {300—500 . \ la, Nuu wg’u gm 8. is 9AM SWDSQ a, c (pg-L S W SK»ka i‘ av A£(x)-\-\93Lx) +C.\A.(.X) “0 0:,ka a} yobijcis), Tm £41ko “an is (M5316; +c.x3 +a\$7‘ 1"Uo . Fm” Ms 4-» he M D Pot3wc£ ova m5“! Law a=E=C°O, (b) (5 points) Find dim(Span(S)). amuvmm = \fb\ =3. 3. (30 points) Let T: V ——> W be a linear transformation. Prove that if T is l—to—1, and v1, . . . ,Uk 6 V are linearly independent, then T(vl), . . . ,T(vk) are linearly independent. Sammy“ Q\T(\J\) + QZTLVL3+ + ak T(\Ju\ =0 , 9mm 1‘ a: 0m, +142 RAH-howl) 5:00,). is naval i-o TLay‘ +azv,_«-... +qumy S‘mm T is l— {‘04, ’iC-JL ‘Cad- ‘lbq‘l' {his Em («fix-25 Q‘m + QzVL-t- . . -+C\\‘V\L:o. ' ~ J. a; ﬁne/UL}, QMUL UH ...l\jv_ m wilsz , S \m‘nbu Mix all coaCL‘cJeMls a; m 200. “M62 TWO ) “VT-(Va) CUM ﬂaws \uaﬂnPQMQ“-+- ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

exam1sol - Marl'h HO T—EJL 219%“HORM l(5 points each...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online