Lesson%2015 - Lesson 15 Challenge 14 Lesson 15 FIR...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
Lesson 15 Challenge 14 Lesson 15: FIR Frequency Response Special cases Case study MATLAB design Challenge 15
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 14 Challenge Two N+1=11 order comb filters, having an impulse response  h[k]={1,0,0,0,0,0,0,0,0,0,0,1} and frequency response H(e j ω )=2(cos( ω N/2)e -j ω N/2 are cascaded.  What is the frequency response H 0 (e j ω ) of the cascaded filter? Response Treat the 1 st  impulse response as an input signal having a given frequency  response: H(e j ω )=| H(e j ω )| H(e j ω )=(2(cos(10 ω /2)) -10 ω /2=(2(cos(5 ω )) -5 ω Then  H 0 (e j ω )=| H(e j ω )| 2 2H(e j ω )=4cos(5 ω ) 2 -10 ω
Background image of page 2
    Lesson 15 The frequency response function is a steady-state metric since it is based on an input signal which exists for all time. ( 29 ( 29 ( 29 ω φ j j N m m j i j e e H e h e H = = - = - 1 0 [ ] n j j e Ae n x =
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 15 The frequency response function can be graphically interpreted in terms of the magnitude and phase  response.  Common frameworks: Magnitude response Linear-linear Log (dB) – linear Log (db) – log (octave)  ( 29 ( 29 ( 29 ω φ j j N m m j i j e e H e h e H = = - = - 1 0 Phase response Linear – linear Linear – log (octave)
Background image of page 4
    Lesson 15 Phase response was noted to be problematic Phase unwrapping FIRs = Linear phase or non-linear phase? Group delay N th  order  linear phase  FIR    τ =(N-1)/2  (developed in earlier lessons) π 0 Unwrapped phase Wrapped phase ( 29 ( 29 ω φ τ d d - =
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 15 Delay systems y[n]=x[n-n 0   H(e j ω ) = e -j ω n 0   unit magnitude with phase - ω n 0   Discrete-time equations   y[n]=a 0 x[n]+ a 1 x[n-1]+ a 2 x[n-2]+ . ..   Impulse response x[n]= δ [n] is h[n]={a 0 , a 1 , a 2 , … }  -   moral  
Background image of page 6
  Lesson 15 Difference equation y[n] = a 0 x[n] – a no x[n-n 0 ] . .. If a
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/21/2010 for the course EEL 3135 taught by Professor ? during the Spring '08 term at University of Florida.

Page1 / 35

Lesson%2015 - Lesson 15 Challenge 14 Lesson 15 FIR...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online