Lesson_20 - Lesson20 Challenge19 Lesson20FIRfilters...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Lesson 20 Challenge 19 Lesson 20 – FIR filters Challenge 20
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 19 A filter is clocked at a rate f s =1k Sa/s and has the pole-zero distribution  shown and is known to have DC gain of 0dB.  What is the filter’s magnitude  frequency and phase response at f=0.25kHz? X      0.5+j0.5 X     0.5-j0.5 -0.5+j0.5  0 -0.5-j0.5    0
Background image of page 2
    Challenge 19 The transfer function is given by: H(z) = k (z+0.5+j0.5) (z+0.5-j0.5)/ ((z- 0.5+j0.5) (z- 0.5-j0.5))  Determine k H(z=1)=1=k(2.5)/(0.5)=5k.   Therefore k=0.2. X 0.5+j0.5 X 0.5-j0.5 0 -0.5+j0.5 0 -0.5-j0.5 A B C D
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 19 Determine A,B,C, and D at  ω  =  π /2 (z=0+j1) A=0.707 135 ° B=1.58 108.5 ° C=1.58 71.5 ° D=0.707 45 ° At test frequency is at  ω  =  π /2: H(z=j)=0.2(CD)/(AB)              = 0.2 (1 -127 ° ) X 0.5+j0.5 X 0.5-j0.5 0 -0.5+j0.5 0 -0.5-j0.5 A B C D
Background image of page 4
    Challenge 19 Verify » b=[.2, .2, .2*.5];   {0.2(z 2 +z+0.5)} » a=[1, -1, 0.5];       {(z 2 -z+0.5)} » x=[1,zeros(1,100)]; » y=filter(b,a,x); » yf=fft(y); » plot(abs(yf(1,1:100))) » plot(360*angle(yf(1,1:100))/(2*pi))
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 19 1.0 0.2
Background image of page 6
    Challenge 19 0.0 ° -127 °
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 20    Lesson 20:  Filters and FIR Properties
Background image of page 8
    Lesson 20 FIR (basic ideas) Impulse Response Direct Architecture { } 1 1 0 ,..., , ] [ - = N h h h k h - = = 1 0 ] - [ ] [ N m m m k x h k y
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 20 FIR (basic ideas) Transfer function Frequency Response - = - = 1 0 ) ( N k k k z h z H ( 29 k j N k k j e z e h e H z H j ω - - = = = = 1 0 ) (
Background image of page 10
    Lesson 20 Special Cases N th  order MA (N+1) st  order comb ( 29 1 1 - 1 1 - 1 1 1 1 1 1 1 1 1 1 ) ( 1 1 - 1 - 1 - 0 - 1 0 - - = - = - - - = = - = = - - - - = = - = z z z N z z N z z N z N z N z N z N z H N N N N N m m m m N m m MA ( 29 N N N C z z z z H 1 1 ) ( ± = ± = -
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 20 Special Cases Moving Average Comb
Background image of page 12
    Lesson 20 Polynomial zeros: ( 29 ( 29 ] 1 - , 0 [ for 0 1 ] 1 - , 0 [ for 0 1 /
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 33

Lesson_20 - Lesson20 Challenge19 Lesson20FIRfilters...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online