Lesson_21 - Lesson21 Challenge20 Lesson21:IIRFilters...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Lesson 21 Challenge 20 Lesson 21:  IIR Filters Challenge 21
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 20 Design a heuristic 7th order lowpass FIR having a passband frequencies of  ω   = { -2 π /7, 0, 2 π /7}. Q:  What is H(z)? Is the filter linear or non-linear phase? If linear phase , what is the FIRs group delay? --------------------------------------------------------------------- The design of the heuristic FIR requires that the pole-zero cancellation  occurs at the passband frequencies of  ω  = { -2 π /7, 0, 2 π /7} and filter zeros  exist at  ω  = { -6 π /7, -4 π /7, 4 π /7, 6 π /7}.  
Background image of page 2
    Challenge 20 » h2=[1,-(cos(4*pi/7)+i*sin(4*pi/7))];  { ω  =4 π /7} » h3=[1,-(cos(6*pi/7)+i*sin(6*pi/7))];  { ω  =6 π /7} » h4=[1,-(cos(8*pi/7)+i*sin(8*pi/7))];  { ω  =-6 π /7 = 8 π /7 } » h5=[1,-(cos(10*pi/7)+i*sin(10*pi/7))];  { ω  =-4 π /7 = 10 π /7 } » h=conv(conv(conv(h2,h3),h4),h5); » y=conv(h,zeros(1,100)); » plot(abs(fft(y))) » y=conv(h,[1,zeros(1,100)]); » plot(abs(fft(y))) » zplane(h,1) h =    1.0000   2.2470   2.8019   2.2470  1.0000    {linear phase} Therefore H(z) = 1 + 2.24 z -1  + 2.80z -2  +2.24 z -3  + z -4
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Challenge 20
Background image of page 4
    Challenge 20 >> [h,w]=freqz(h,1); >> h=[1, 2.24, 2.8, 2.24, 1]; >> [h,w]=freqz(h,1); >> plot(180*angle(h)/pi); >> plot(w,180*angle(h)/pi); π /2 π Slope m=-2
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 21 Infinite Impulse Response (IIR) Filters or Recursive Filters
Background image of page 6
    Lesson 21 IIRs If a 0 =1, the system is called  monic .   The coefficient a i  define the feedforward path and b i  the feedback path.  In  most cases, M N, where M normally defines the order of the filter.  If initial conditions are zero, system is said to be  at-rest . - + - = = = M 0 m m N 1 m m 0 m] x[k b m] y[k a a 1 y[k]
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Lesson 21 Impluse response Complicated
Background image of page 8
    Lesson 21 Example y[n]=0.8 y[n-1]+5x[n] n= h[n] s[n] 0 h[0]=(0.8*0+5)=5 s[0]=(0.8*0+5)=5 1 h[1]=(0.8*5+0) = 0.8*5
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/21/2010 for the course EEL 3135 taught by Professor ? during the Spring '08 term at University of Florida.

Page1 / 32

Lesson_21 - Lesson21 Challenge20 Lesson21:IIRFilters...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online