Lesson_29

# Lesson_29 - Lesson 29 Challenge 28 Lesson 29 Introduction...

This preview shows pages 1–9. Sign up to view the full content.

Lesson 29 Lesson 29 Challenge 28 Lesson 29 – Introduction to Frequency Response Challenge 29

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 29 Challenge 28 Given 0 , 2 0 , 0 1 , 1 0 1 1 = - = = - = d c b A
Lesson 29 Challenge 28 Given 0 , 2 0 , 0 1 , 1 0 1 1 = - = = - = d c b A ( 29 ( 29 [ ] = - - = + - + - + = + - = - 0 ) 1 /( 1 2 0 1 1 1 0 1 1 ) ( ) ( 1 z d b z z z z c d b A zI c z H T T = 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 29 Challenge 28 Given 0 , 2 0 , 0 1 , 1 0 1 1 = - = = - = d c b A » A=[1 1; 0 -1]; b= [1; 0]; ct= [0, -2]; d=0; » [NUM,DEN]=SS2TF(A,b,ct,d); » NUM      0     0     0    {N(z)=0} » DEN      1     0    -1       {D(z)= z 2  -1}
Lesson 29 Challenge 28 Given 0 , 2 0 , 0 1 , 1 0 1 1 = - = = - = d c b A Changing the state model to: results in: » A=[1 1; 0 -1]; b= [1; 0]; ct= [-2, 0]; d=0; » [NUM,DEN]=SS2TF(A,b,ct,d); » NUM      0    -2    -2       {N(z)= -2z -2} » DEN      1     0    -1       { D(z)= z 2  -1} or H(z) = -2(z+1)/(z 2 -1)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 29 Lesson 29 Chapter 10:   Random thoughts on frequency response analysis and system analysis
Lesson 29 Lesson 29 How would one study the following 1 th  order ODE system?              dy(t)/dt + ay(t) = b v(t) Simulation diagram shown below. v(t) b x(t)   =       y(t) dx(t)/dt

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 29 Lesson 29 State model:   Assign x 1 (t)=x(t) [dx 1 (t)/dt]=  A  x 1 (t) +  b v(t) = [a] x 1 (t) + [b]v(t) Output model :  y(t) =  c T  x 1 (t) + d v(t) = [1] x 1 (t) + [0] v(t)
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern