# Lesson_8 - Lesson8 Challenge7 Lesson8 Reconstruction...

This preview shows pages 1–4. Sign up to view the full content.

Lesson 08 Lesson 8 Challenge 7 Lesson 8 Reconstruction What is it? How is it accomplished? Challenge 8

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 08 Challenge 7 Consider the unit circle shown below with f s =8000 Sa/s (known) and f 0 =3000  Hz (known).  The first tone that killer would hear that you wouldn’t (you can  hear out to 15kHz) is 18kHz (best guess). 0, ± 8k, ± 16k, …. 0, ± 4k, ± 12k, …. 3k, -5k, 11k, -13k, 19k, -21k, ….
Lesson 08 Lesson 8 Sampling Theorem Revisited  Suppose that the highest frequency contained in a continuous-time signal  x ( t is  f max = B  Hz.  Then, if  x ( t ) is sampled periodically at a rate  f s >2 B , the original  signal,  x ( t ), can be  exactly  recovered (reconstructed) from the sample values  x [ k ] using the  interpolation  rule where  h ( t ) is the  impulse response  of Shannon’s interpolating filter to an  impulse (called the impulse response). This process is called

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 17

Lesson_8 - Lesson8 Challenge7 Lesson8 Reconstruction...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online