Lesson_8 - Lesson8 Challenge7 Lesson8 Reconstruction...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Lesson 08 Lesson 8 Challenge 7 Lesson 8 Reconstruction What is it? How is it accomplished? Challenge 8
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  Lesson 08 Challenge 7 Consider the unit circle shown below with f s =8000 Sa/s (known) and f 0 =3000  Hz (known).  The first tone that killer would hear that you wouldn’t (you can  hear out to 15kHz) is 18kHz (best guess). 0, ± 8k, ± 16k, …. 0, ± 4k, ± 12k, …. 3k, -5k, 11k, -13k, 19k, -21k, ….
Background image of page 2
  Lesson 08 Lesson 8 Sampling Theorem Revisited  Suppose that the highest frequency contained in a continuous-time signal  x ( t is  f max = B  Hz.  Then, if  x ( t ) is sampled periodically at a rate  f s >2 B , the original  signal,  x ( t ), can be  exactly  recovered (reconstructed) from the sample values  x [ k ] using the  interpolation  rule where  h ( t ) is the  impulse response  of Shannon’s interpolating filter to an  impulse (called the impulse response). This process is called 
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 17

Lesson_8 - Lesson8 Challenge7 Lesson8 Reconstruction...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online