Lesson_9 - Lesson9 Challenge8 Lesson9 FIRfilters Challenge9...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Lesson 09 Lesson 9 Challenge 8 Lesson 9 FIR filters Challenge 9
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  Lesson 09 Challenge 8 A sinusoid x(t)=cos(2 π 100t), for t 0, 0 otherwise, is sampled at a rate  f s =1000 Sa/s (oversampled).  The sample values are: x[k]={1.0, 0.809, 0.309, -0.309, -0.809, -1.0, -0.809, -0.309, 0.309, 0.809, 1.0} The sampled signal x[k] is sent to a discrete-to-continuous-time (D to C)  converter which produces a continuous time output signal using linear  interpolation given by:  ( 29 - - = otherwise T t T for T t t p s s s 0 1 -T s 0 T s 1
Background image of page 2
  Lesson 09 Challenge 8 x[k]= {1.0, 0.809, 0.309, -0.309, -0.809, -1.0, -0.809, -0.309, 0.309,                           0.809, 1.0} -.001 0 .001 .002 .003 .004 .005 .006 .007 .008. .009 .010 0.809 0.309 -0.309 -0.809 -1.000 1.0
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  Lesson 09 Challenge 8 Interpolated signal -.001 0 .001 .002 .003 .004 .005 .006 .007 .008. .009 .010 1.000 0.809 0.309 -0.309 -0.809 -1.000 Maximum approximation error for all time  is at t=0 - , is unity but this error is outside  the analysis 10ms window.
Background image of page 4
  Lesson 09 Challenge 8 Machine interpolation Error min(err)= -0.046561 max(err)= 0.0465711 worst case error ~ 0.0465 Error e(t)=x(t)-x interpolated (t)
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  Lesson 09 Lesson 9 FIR filters (digital filters) General Purpose Graphics Filtering (Convolution) Rotation Detection (Correlation) Image transmission and compression Spectral analysis (Fourier transforms) Image recognition Adaptive filtering Image enhancement Instrumentation Control Waveform generation Servo control Transient analysis Disk control Steady-state analysis
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/21/2010 for the course EEL 3135 taught by Professor ? during the Spring '08 term at University of Florida.

Page1 / 24

Lesson_9 - Lesson9 Challenge8 Lesson9 FIRfilters Challenge9...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online