Lesson_12

# Lesson_12 - Lesson12 Challengesuptodate Lesson12...

This preview shows pages 1–8. Sign up to view the full content.

Lesson - 12 Lesson 12 Challenges up to date Lesson 12 Impulse invariant Linearity Applications New Lesson List posted

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson - 12 Lesson 12  Linear Convolution [ ] [ ] = - = = M k k k n x h k x k h n y 0 ] [ ] [ h[k] x[k] y[k]
Lesson - 12 Lesson 12  Example x={x[0], x[1], x[2], x[3]} = [1, 1, 1, 1]  h={h[0], h[1], h[2], h[3]} = [ 1, 1, 1, 1]. y[0]=h[0]x[0] = 1   h[0] h[1] h[2] h[3] x[3] x[2] x[1] x[0]

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson - 12 Lesson 12  Example x={x[0], x[1], x[2], x[3]} = [1, 1, 1, 1]  h={h[0], h[1], h[2], h[3]} = [ 1, 1, 1, 1]. y[1]=h[0]x[1] + h[1]x[0] = 2   h[0] h[1] h[2] h[3] x[3] x[2] x[1] x[0]
Lesson - 12 Lesson 12  Example x={x[0], x[1], x[2], x[3]} = [1, 1, 1, 1]  h={h[0], h[1], h[2], h[3]} = [ 1, 1, 1, 1]. y[2]=h[0]x[2] + h[1]x[1] + h[2]x[0] = 3     h[0] h[1] h[2] h[3] x[3] x[2] x[1] x[0]

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson - 12 Lesson 12  Example x={x[0], x[1], x[2], x[3]} = [1, 1, 1, 1]  h={h[0], h[1], h[2], h[3]} = [ 1, 1, 1, 1]. y[3]=h[0]x[3] + h[1]x[2] + h[2]x[1] + h[2]x[0] = 4  h[0] h[1] h[2] h[3] x[3] x[2] x[1] x[0]
Lesson - 12 Lesson 12  Example x={x[0], x[1], x[2], x[3]} = [1, 1, 1, 1]  h={h[0], h[1], h[2], h[3]} = [ 1, 1, 1, 1]. y[4]=h[0]0 + h[1]x[3] + h[2]x[2] + h[2]x[1] = 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 25

Lesson_12 - Lesson12 Challengesuptodate Lesson12...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online