{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lesson_26

# Lesson_26 - Lesson26 Challenge25 Challenge26 Lesson 26...

This preview shows pages 1–6. Sign up to view the full content.

Lesson 26 Lesson 26 Challenge 25 Lesson 26  -  Continuous-time signals and systems Challenge 26

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 26 Challenge 25 A continuous time system is defined by an integrator which has an initial  condition y(0).  If presented with a continuous-time input x(t), the output is: Is the system linear? ( 29 ( 29 ( 29 0 0 y d x t y t + = τ τ
Lesson 26 Challenge 25 Let x 1 (t) be given,  Let x 2 (t) be given,  Let x(t)= x 1 (t)+ x 2 (t),  But y 1 (t)+ y 2 (t),  System is non-linear. ( 29 ( 29 ( 29 0 0 1 1 y d x t y t + = τ τ ( 29 ( 29 ( 29 0 0 2 2 y d x t y t + = τ τ ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 0 0 0 2 0 1 0 2 1 y d x d x y d x x t w t t t + + = + + = τ τ τ τ τ τ τ ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 . 0 2 0 2 0 1 t w y d x d x t y t t + + = τ τ τ τ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 26 Lesson 26 Linear convolution: What are the evaluation methodologies? Integrate (use a computer) Transforms (to be introduced) Graphical ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 τ τ τ τ τ τ d h t x d t h x t x t h t y - - - = - = =
Lesson 26 Lesson 26 Convolve a 1 sec. pulse with a 1 sec. pulse using MATBAL conv function.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}