Lesson_140

# Lesson_140 - Lesson14 Challenge13...

This preview shows pages 1–7. Sign up to view the full content.

Lesson 14 Lesson 14 Challenge 13 Lesson 14:  FIR Frequency response Challenge 14:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 14 Challenge 13 Compare the frequency responses of two L=6 order LTI FIRs shown below: h1={1,1,1,1,1,0} h2={0,1,1,1,1,1} Compare them in terms of magnitude and phase frequency responses.
Lesson 14 Challenge 13 Computing the frequency response H 1 (e j ω ) = 1 +  e -j ω  + e -j2 ω  +  e -j3 ω  + e -j4 ω  =   = e -j2 ω  ( e j2 ω  +  e j ω  +1 + e -j ω  + e -j2 ω =  e -j2 ω   ( 1+2cos( ω )+2cos(2 ω )); - π≤ ω < π H 2 (e j ω ) = e -j ω  + e -j2 ω  + e -j3 ω  + e -j4 ω  + e -j5 ω  =   = e -j3 ω  ( e j2 ω  +  e j ω  +1 + e -j ω  + e -j2 ω =  e -j3 ω   ( 1+2cos( ω )+2cos(2 ω )); - π≤ ω < π

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 14 Challenge 13 Comparing the magnitude frequency responses one determines that they are  equal. |H 1 (e j ω )| = |1 +  e -j ω  + e -j2 ω  +  e -j3 ω  + e -j4 ω  |=   = |e -j2 ω  ( e j2 ω  +  e j ω  +1 + e -j ω  + e -j2 ω )|  =   |e -j2 ω   | | ( 1+2cos( ω )+2cos(2 ω ))| =  | ( 1+2cos( ω )+2cos(2 ω ))|; - π≤ ω < π |H 2 (e j ω )| = |e -j ω  + e -j2 ω  + e -j3 ω  + e -j4 ω  + e -j5 ω  |=   |e -j3 ω   | |( e j2 ω  +  e j ω  +1 + e -j ω  + e -j2 ω )|  =  |( 1+2cos( ω )+2cos(2 ω ))|; - π≤ ω < π
Lesson 14 Challenge 13 The phase response of the first filter is   H 1 (e j ω )=-2 ω  and for the second    H 2 (e j ω )=-3 ω . H 1 (e j ω ) =   e -j2 ω  +    ( 1+2cos( ω )+2cos(2 ω ))    e -j2 ω  = -j2 ω ; - π≤ ω < π  H 2 (e j ω ) =   e -j3 ω  +   ( e j2 ω  +  e j ω  +1 + e -j ω  + e -j2 ω  e -j3 ω   = -j3 ω ; - π≤ ω < π

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Lesson 14
This is the end of the preview. Sign up to access the rest of the document.

## Lesson_140 - Lesson14 Challenge13...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online