dynamicpanelslides

dynamicpanelslides - Introduction to Dynamic Panel Data:...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Introduction to Dynamic Panel Data: Autoregressive Models with Fixed E f ects Eric Zivot December 2, 2009
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Dynamic Panel Data y im = ρy i,m 1 + α i + η im i =1 ,...,n (individuals) m ,...,M (time periods) Typical assumptions 1. Stationarity: | ρ | < 1 2. E [ η im | y i 0 ,...,y i,m 1 i ]=0 3a. Homoskedasticity: η im iid (0 2 η ) 3b. Homeskedasticity: α i iid (0 2 α )
Background image of page 2
Example: International Di f erence in Growth Rates (Hayashi, Section 5.4) y im = ρy i,m 1 + α i + η im y im =( ρ 1) y i,m 1 + α i + η im 1. y im =ln( Y ( t m ) /L ( t m )) = log per capita output at time t m 2. Y ( t m )= aggregate output 3. L ( t m aggregate hours worked 4. α i =(1 ρ ) { ln( q i ) ln( A i (0)) 5. q = steady state level of ouput per e f ective labor 6. q ( t Y ( t ) / ( A ( t ) L ( t )) output per e f ective labor input at time t
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
7. A ( t )= level of labor augmenting technical progress 8. ln( q ( t m )) = (1 ρ )ln( q )+ ρ ln( q ( t m 1 )) 9. ρ =exp( λ ( t m t m 1 )) = speed of convergence ( > 0)
Background image of page 4
Stationary Model Representation By recursive substitution y i 1 = ρy i 0 + α i + η i 1 y i 2 = ρy i 2 + α i + η i 2 = ρ [ ρy i 0 + α i + η i 1 ]+ α i + η i 2 = ρ 2 y i 0 +(1+ ρ ) α i + ρη i 1 + η i 2 . . . y im = ρ m y i 0 + α i m 1 X s =0 ρ s + m 1 X s =0 ρ s η i,m s
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Now E [ y im | α i ]= ρ m E [ y i 0 | α i ]+ α i m 1 X s =0 ρ s + m 1 X s =0 ρ s E [ η i,m s | α i ] = ρ m E [ y i 0 | α i α i m 1 X s =0 ρ s For large m ρ m 0 m 1 X s =0 ρ s 1 1 ρ
Background image of page 6
so that E [ y im | α i ] α i 1 ρ var[ y im | α i ] X s =0 var[ ρ s η i,m s | α i ] = σ 2 η 1 ρ 2
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Estimation Can’t use RE estimation because E [ y i,m 1 · α i ] = E ρ m 1 y i 0 + α i m 2 X s =0 ρ s + m 2 X s =0 ρ s η i,m s α i 6 =0 What about FE estimation?
Background image of page 8
Write the model in FE matrix notation as y i = ρ y i, 1 + α i 1 M + η i y i M × 1 = y i 1 . . . y iM , y i, 1 M × 1 = y i 0 .
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 26

dynamicpanelslides - Introduction to Dynamic Panel Data:...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online