least_squares_2009_10_14_01_2up

Least_squares_2009_1 - 8 1 Least Squares S Lall Stanford 2009.10.14.01 8 Least Squares • The pseudo-inverse • Example pseudo-inverse •

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 8 - 1 Least Squares S. Lall, Stanford 2009.10.14.01 8. Least Squares • The pseudo-inverse • Example: pseudo-inverse • Estimation and least-squares • Effects of noise on estimation • Example: navigation • Regression or curve-fitting • Example: fitting polynomials • Example: rocket • Control and minimum-norm problems • Example: force on mass • Matlab and the pseudo-inverse • History of least-squares 8 - 2 Least Squares S. Lall, Stanford 2009.10.14.01 The Key Points of This Section estimation problems: given y meas , find the least-squares solution x , that minimizes k y meas − Ax k control problems: given y des , find the minimum-norm x that satisfies y des = Ax • the SVD gives a computational approach • it also gives useful information even when important assumptions don’t hold • estimation: usually need A skinny and full rank • control: usually need A fat and full rank • it gives us quantitative information about the usefulness of the solutions 8 - 3 Least Squares S. Lall, Stanford 2009.10.14.01 important facts null( A T ) = range( A ) ⊥ easy via the SVD: because if the SVD of A is A = U Σ V T then range( A ) = span { u 1 , . . . , u r } also the SVD of A T is A T = V Σ T U T so null( A T ) = span { u r +1 , . . . , u n } 8 - 4 Least Squares S. Lall, Stanford 2009.10.14.01 one more null( A T A ) = null( A ) also easy via the SVD: A T A = V Σ T U T U Σ V T = V Σ T Σ V T which gives an SVD of A T A . Σ T Σ has the same number of non-zero elements as Σ , so both A and A T A have null space span { v r +1 , . . . , v n } 8 - 5 Least Squares S. Lall, Stanford 2009.10.14.01 The Pseudo-Inverse the thin SVD is A = ˆ U ˆ Σ V T = A U ê Î ê V T here • ˆ Σ is square, diagonal, positive definite • ˆ U and ˆ V are skinny, orthonormal columns the pseudo-inverse of A is A † = ˆ V ˆ Σ − 1 ˆ U T it is computed using the SVD 8 - 6 Least Squares S. Lall, Stanford 2009.10.14.01 example rank 2 matrix: A = − 5 − 5 − 14 − 8 1 − 1 4 5 4 11 10 24 11 − 6 the full svd: = − . 49 . 30 0 . 82 . 12 − . 91 0 . 41 . 86 . 30 0 . 41 35 . 69 0 0 0 7 . 02 0 0 0 0 0 0 . 33 . 31 . 79 . 39 − . 15 . 38 . 20 − . 11 − . 53 − . 73 . 25 − . 86 . 36 − . 25 . 01 . 45 − . 26 − . 47 . 67 − . 25 . 69 . 22 − . 14 − . 25 . 62 the thin svd: = − . 49 . 30 . 12 − . 91 . 86 . 30 35 . 69 7 . 02 . 33 0 . 31 . 79 . 39 − . 15 . 38 0 . 20 − . 11 − . 53 − . 73 pseudo-inverse: A † = . 33 . 38 . 31 . 20 . 79 − . 11 . 39 − . 53 − . 15 − . 73 1 35 . 69 1 7 . 02 − . 49 . 12 0 . 86 . 30 − . 91 0 . 30 8 - 7 Least Squares S. Lall, Stanford 2009.10.14.01 key point: pseudo-inverse solves • least-squares estimation problems • minimum-norm control problems properties of the pseudo-inverse...
View Full Document

This note was uploaded on 08/23/2010 for the course EE 263 taught by Professor Boyd,s during the Fall '08 term at Stanford.

Page1 / 17

Least_squares_2009_1 - 8 1 Least Squares S Lall Stanford 2009.10.14.01 8 Least Squares • The pseudo-inverse • Example pseudo-inverse •

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online