Enzyme Catalysts - Title AP Lab#2 Enzyme Catalysts...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Title: AP Lab #2: Enzyme Catalysts Introduction: Enzymes are catalytic proteins, meaning they speed up – but do not create – chemical reactions, without being used up or altered permanently in the process. Although various enzymes use different methods, all accomplish catalysis by lowering the free energy of activation – activation energy – for the reaction, thus allowing it to occur more easily. Enzymes employ a variety of methods for performing catalysis. Some provide a micro environment within the active site where some of the side chains are H+ or OH- donors or receivers. Other enzymes work by bringing together substrates that would not normally meet outside the enzyme, or orienting them in a manner in which they would otherwise not occur. Still other enzymes stress the bonds of substrate molecules in order to make them easier to break; some take this a step further by actually forming temporary covalent bonds with the substrate molecules. Regardless of how it is done, all enzyme catalyzed reactions are reversible and will turn around when necessary. As a result of four levels of organization, an enzyme has a very specific shape, which is called its conformation. Even more specific is the active site of the enzyme, where the actual catalysis occurs. The specific molecule or closely related molecules on which an enzyme functions is known as its substrate. Shape plays such an important role in enzymatic catalysis, that often even isomers of the substrate will be rejected. Once the substrate enters the active site, it may begin a process known as induced fit in which the enzyme perfectly conforms to the molecule to allow for more efficient catalysis. Enzymes have specific environmental conditions at which they will function best. As a result, changes in environment can severely impact enzyme catalysis in both negative and positive ways. Each enzyme has specific ranges at which it optimally functions; in general, increasing the temperature will help the reaction along, until the point at which the protein degrades and denatures – or falls apart into its lower level structures. Denatured proteins will
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern