L03_BinomialCoefficients_print

# L03_BinomialCoefficients_print - 1 COMP170 Discrete...

This preview shows pages 1–10. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 COMP170 Discrete Mathematical Tools for Computer Science Discrete Math for Computer Science K. Bogart, C. Stein and R.L. Drysdale Section 1.3, pp. 19-26 Binomial Coefficients Version 2.0: Last updated, May 13, 2007 Slides c 2005 by M. J. Golin and G. Trippen 2 1.3 Binomial Coefficients • Pascal’s Triangle • A Proof using the Sum Principle • The Binomial Theorem • Labeling and Trinomial Coefficients 3 Some properties of Binomial Coefficients • n k = n ! k !( n- k )! • n = 1 only one set of size . • n n = 1 only one set of size n . • n k = n n- k Obvious from equation. Can you think of a simple bijection that explains this? is the number of k-element subsets of an n-element set. 4 Some properties of Binomial Coefficients (cont) n X i =0    n i    = 2 n Use Sum Principle Let P = set of all subsets of { 1,2,. . . ,n } S i = set of all i subsets of { 1,2,. . . ,n } ⇒ | P | = n X i =0 | S i | = n X i =0 n i Let L = L 1 L 2 ...L n be a list of size n from { , 1 } If L = set of all such lists ⇒ |L| = 2 n There is a bijection (next page) between L and P so | P | = 2 n and we are done. 5 Let P = set of all subsets of { 1,2,. . . ,n } Let L = L 1 L 2 ...L n be a list of size n from { , 1 } and L = set of all such lists Define the following function f : L → P If L ∈ L then f ( L ) is the set S ⊆ { 1 ,, 2 ,...,n } defined by i ∈ S ⇔ L i = 1 f (10101) = { 1 , 3 , 5 } , f (11101) = { 1 , 2 , 3 , 5 } , f (00000) = ∅ . Ex: n = 5 f is a bijection between L and P (why?) so |L| = | P | Note: L is sometimes called the incidence vector or membership vector associated with L 6 P =          { 1 } { 1 , 2 }{ 1 , 3 } { 1 , 2 , 3 } { 1 , 2 , 3 , 4 } {} { 2 } { 1 , 4 }{ 2 , 3 } { 1 , 2 , 4 } { 3 } { 2 , 4 }{ 3 , 4 } { 1 , 3 , 4 } { 4 } { 2 , 3 , 4 }          Example: n = 4 , S = { 1 , 2 , 3 , 4 } 7 P =          { 1 } { 1 , 2 }{ 1 , 3 } { 1 , 2 , 3 } { 1 , 2 , 3 , 4 } {} { 2 } { 1 , 4 }{ 2 , 3 } { 1 , 2 , 4 } { 3 } { 2 , 4 }{ 3 , 4 } { 1 , 3 , 4 } { 4 } { 2 , 3 , 4 }          P = { S , S 1 , S 2 , S 3 , S 4 } Example: n = 4 , S = { 1 , 2 , 3 , 4 } 8 P =          { 1 } { 1 , 2 }{ 1 , 3 } { 1 , 2 , 3 } { 1 , 2 , 3 , 4 } {} { 2 } { 1 , 4 }{ 2 , 3 } { 1 , 2 , 4 } { 3 } { 2 , 4 }{ 3 , 4 } { 1 , 3 , 4 } { 4 } { 2 , 3 , 4 }          | S | = 4 , | S 1 | = 4 1 , | S 2 | = 4 2 , | S 3 | = 4 3 , | S 4 | = 4 4 Example: n = 4 , S = { 1 , 2 , 3 , 4 } 9 P =          { 1 } { 1 , 2 }{ 1 , 3 } { 1 , 2 , 3 } { 1 , 2 , 3 , 4 } {} { 2 } { 1 , 4 }{ 2 , 3 } { 1 , 2 , 4 } { 3 } { 2 , 4 }{ 3 , 4 } { 1 , 3 , 4 } { 4 } { 2 , 3 , 4 } ...
View Full Document

## This note was uploaded on 08/25/2010 for the course COMP COMP170 taught by Professor M.j.golin during the Spring '10 term at HKUST.

### Page1 / 34

L03_BinomialCoefficients_print - 1 COMP170 Discrete...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online