Chapter62004solutions

# Chapter62004solutions - Chapter 6 Test 1. Evaluate 1 1 dx...

This preview shows pages 1–2. Sign up to view the full content.

Chapter 6 Test December 7, 2004 Name 1. Evaluate 0 1 1 cccccccccccccccc cccccccccccccc x 2 + 2x + 1 dx = 0 1 1 cccccccccccccccc ccccccc H x + 1 L 2 dx u = x + 1, du = dx 1 2 u 2 du =− A 1 cccc u E 1 2 i k j j 1 cccc 2 1 y { z z = 1 cccc 2 2. Evaluate è!!! x i k j j è!!! x 3 + 4 y { z z dx = i k j j j j j x 5 cccc 6 + 4 x 1 cccc 2 y { z z z z z dx = 6 cccccc 11 x 11 cccccc 6 + 8 cccc 3 x 3 cccc 2 + C 3. Solve the initial value problem. Support your answer by overlaying your solution on a slope field for the differential equation. dy dx = 1 ccccccccccccccc x + 3 cccc 2 ,y i k j j 1 2 y { z z = 1 2 1 1 2 1 1 2 3 dy = · 1 ccccccccccccccc x + 3 cccc 2 dx y = ln ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ x + 3 cccc 2 ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ + C y = ln 1 + C = 1 C = 1 y = ln ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ x + 3 cccc 2 ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ + 1 4. Evaluate 1 y 2 sec i k j j j j 1 cccc y y { z z z z tan i k j j j j 1 cccc y y { z z z z dy u = 1 cccc y = y 1 ,du = 1 cccccc y 2 dy →− du = 1 y 2 dy sec u tan u du sec u + C sec i k j j j j 1 cccc y y { z z z z + C 5. Solve the following differential equation by the technique of separation of variables : dy dx = x è!!!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 08/29/2010 for the course MATH 44323 taught by Professor Anderson during the Spring '09 term at University of California, Berkeley.

### Page1 / 3

Chapter62004solutions - Chapter 6 Test 1. Evaluate 1 1 dx...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online