13 when t 3 and t 3 6 5 4 3 2 1 6 5

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: − 1L dtN i + i z j ln 2 { k i 1 2t + C y j = Htan t − t + C1 L i + j j z 2z k ln 2 { Find the equations of the tangent lines for x = t2 and y = t3 − 3 t r HtL if dr dt = tan2 t i + 2t j è!!!!!! 13 when t= è!!!! 3 and t=− è!!!! 3 6 5 4 3 2 1 6 5 4 3 2 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6 dy dx = d dθ d dθ Now lim L θ→π → 7. Sketch the graph of the polar equation, and be sure to label at least three polar points H r, θ L, if è!!!! r= 2 + 2 sin θ 4 3 2 1 0 − 3 sin θ cos θ − H3 + 3 cos θL sin θ 0 − 6 sin θ cos θ + H− 3 sin θL cos θ + H3 + 3 cos θL H− sin θL lim θ → π − 3 cos2 θ + 3 sin2 θ − H− 3 sin θL sin θ − H3 + 3 cos θL cos θ → Hr sin...
View Full Document

This note was uploaded on 08/29/2010 for the course MATH 44323 taught by Professor Anderson during the Spring '09 term at University of California, Berkeley.

Ask a homework question - tutors are online