i 3 cos m d 1 2 2 3 3 8 12 9 6 4 24 sin

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = ‡ H16 − 16 cos 6 θL dθ H4 sin 3 θL dθ = 2 ‡ 16 sin 3 θ dθ = 32 ‡ i A = 4‡ z j 2 2 { k2 π 6 1 π 6 π 6 π 6 2 2 0 9. = A16 θ − Find the area of the region inside both equations : r = 2 8π z j − 0y − H0 − 0L sin 6 θ E = i z j 3 { k3 0 8 π 6 0 0 0 = 8π 3 è!!!! 3 cos θ and r = − sin θ. 1 0 2 1 0 1 2 1 2 A=‡ π 2 2π 3 1 2 =A = 3 4 θ+ 2 è!!!! I 3 cos θM dθ + ‡ π 1 2 2π 3 3 8 12 π − 9 π + 6 π − 4 π 24 sin 2 θ E π 2π 3 2 +A + 1 4 H− sin θL dθ = 2 10. Find the area of the region that is inside r = 2 è!!!! è!!!! −3 3 − 3 16 θ− 1 8 sin 2 θ E 2 π π 3 = è!!!! iπ 3 i− 3 j j j j j + =j j j j2 8j 2 k k è!!!! 5π 3 − 24 4 2 i 1 + 1 cos 2 θy dθ + 1 i 1 − 1 cos 2 θy d...
View Full Document

This note was uploaded on 08/29/2010 for the course MATH 44323 taught by Professor Anderson during the Spring '09 term at University of California, Berkeley.

Ask a homework question - tutors are online