Chapter102007

# Chapter102007 - Chapter 10 Test April 6 2007 No Calculators...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 10 Test April 6, 2007 No Calculators Name y = - t + sin t where 0 £ t £ 2p 1. Find the point HsL at which the tangent to the curve is vertical if 1 x = ÄÄÄÄÄ t + cos t, 2 d2 y 2. Find ÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä dx2 in terms of t if x = 12 t - t3 , y = t2 - 5 t 3. Find the length of the curve if x = t cos t - sin t, y = t sin t + cos t, and p 0 £ t £ ÄÄÄÄÄ 2 4. Evaluate the vector integral ii 3 ln t y i 2 yy jj Ä z j Ä zz ‡ jj ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z i + j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z jz dt kk t { k t ln t { { e3 e 5. Find the unit vectors Hfour in allL that are tangent and normal to x = 2 t - t2 , y = 3 + t3 - t, at t=1 6. Find the slope of the tangent line for r = 1 + cos q, at 11 p Ä q = ÄÄÄÄÄÄÄÄÄÄÄÄÄ . 6 7. Sketch the graph of the polar equation, and be sure to label at least three polar points H r, q L, if r= "#### 3 + 2 sin q 8. Find the area of the region that is inside both r=2 and r2 = 8 sin 2 q 9. Find the area of the region that is inside r = 2 + 2 cos q and outside r = 6 cos q 10. Find the area of the region that is bounded by one loop of the polar equation r = 2 cos 3 q iqy jz 11. Find the length of the curve r = sin3 j ÄÄÄÄÄ z k3{ from q = 0 to q = 2 p 12. Replace the polar equation by an equivalent Cartesian equation. Then identify or describe the graph if r = 4 tan q sec q ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online