Lecture 35 111908 - RoadMap CoverChapter11:today11/19...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Road Map Cover Chapter 11: today 11/19 Cover Chapter 12:  Friday, 11/21, Monday  11/24, and Wednesday 11/26 Cover Chapter 13 (first few sections):   Monday 12/1, Wednesday 12/3 and Friday  12/5 FINAL EXAM:  Monday December 8,  10AM-noon, room to be announced
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Homework Announcements Homework on Chapter 10 due Friday,  November 21 at 11:59PM Homework on Chapter 11 due Wednesday  December 3 at 11:59PM Homework on Chapter 12 due  Wednesday, December 3 at 11:59 PM Homework on Chapter 13 due Monday,  December 8 at 11:59 PM 
Image of page 2
Rate Laws Simple reaction:  only one reactant (A) Rate = k[A] n Three likely orders:  0, 1 and 2 Zero order:   Rate =k[A] 0 First order: Rate =k[A] 1 Second order: Rate =k[A] 2 Two reactants Rate = k[A] n [B] m n, m = “orders of reaction with respect to A  and B” n+m = “overall order of reaction”
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Integrated Rate Laws:  Account for  Time Zero Order:  [A]  = [A]  – kt t 0 t 0 -kt 1 [A] t - 1 [A] o = kt
Image of page 4
Half-Life The half-life of a reactant:   the time it takes for its  concentration to fall to one-half its original value. When a reaction has proceeded for one half-life (t 1/2 ), the  concentration of the reactant must be [X] = 1/2[X] 0 . Substituting [X] = 1/2[X] 0  into the first-order integrated  rate expression, t 1/2  can be evaluated. Other half-life equations can be constructed for zero- order and second-order reactions using the same  method. t 1/2 = 0.693 k = ln 2 k
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Half-Life Ozone pressure as a function of time in an  experiment designed to model the destruction of  ozone in the stratosphere. The ozone pressure falls by a factor of 0.5 every 19  hours.
Image of page 6
Temperature and Kinetics The rate of reaction decreases as the  temperature of the reaction is decreased.  For two molecules to react, they must first  collide and the collision between reactant  molecules must be sufficiently energetic  before reaction will occur.
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Temperature Effects The Maxwell-Boltzman molecular speed distributions
Image of page 8
Temperature Effects Activation energy or activation barrier is an 
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern