Lecture 35 111908 - RoadMap CoverChapter11:today11/19...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Road Map Cover Chapter 11: today 11/19 Cover Chapter 12:  Friday, 11/21, Monday  11/24, and Wednesday 11/26 Cover Chapter 13 (first few sections):   Monday 12/1, Wednesday 12/3 and Friday  12/5 FINAL EXAM:  Monday December 8,  10AM-noon, room to be announced
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Homework Announcements Homework on Chapter 10 due Friday,  November 21 at 11:59PM Homework on Chapter 11 due Wednesday  December 3 at 11:59PM Homework on Chapter 12 due  Wednesday, December 3 at 11:59 PM Homework on Chapter 13 due Monday,  December 8 at 11:59 PM 
Background image of page 2
Rate Laws Simple reaction:  only one reactant (A) Rate = k[A] n Three likely orders:  0, 1 and 2 Zero order:   Rate =k[A] 0 First order: Rate =k[A] 1 Second order: Rate =k[A] 2 Two reactants Rate = k[A] n [B] m n, m = “orders of reaction with respect to A  and B” n+m = “overall order of reaction”
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Integrated Rate Laws:  Account for  Time Zero Order:  [A]  = [A]  – kt t 0 t 0 -kt 1 [A] t - 1 [A] o = kt
Background image of page 4
Half-Life The half-life of a reactant:   the time it takes for its  concentration to fall to one-half its original value. When a reaction has proceeded for one half-life (t 1/2 ), the  concentration of the reactant must be [X] = 1/2[X] 0 . Substituting [X] = 1/2[X] 0  into the first-order integrated  rate expression, t 1/2  can be evaluated. Other half-life equations can be constructed for zero- order and second-order reactions using the same  method. t 1/2 = 0.693 k = ln 2 k
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Half-Life Ozone pressure as a function of time in an  experiment designed to model the destruction of  ozone in the stratosphere. The ozone pressure falls by a factor of 0.5 every 19 
Background image of page 6
Temperature and Kinetics The rate of reaction decreases as the  temperature of the reaction is decreased.  For two molecules to react, they must first  collide and the collision between reactant  molecules must be sufficiently energetic  before reaction will occur.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Temperature Effects The Maxwell-Boltzman molecular speed distributions
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/29/2010 for the course CHM 2045 taught by Professor Brant during the Fall '08 term at University of South Florida.

Page1 / 28

Lecture 35 111908 - RoadMap CoverChapter11:today11/19...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online